ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于XGBoost算法的多云多霧地區(qū)多源遙感作物識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽皖南煙葉有限責(zé)任公司科技項目(20190563005)


Multi-source Remote Sensing Crop Identification Based on XGBoost Algorithm in Cloudy and Foggy Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    快速,、準確地獲取作物種植面積信息是長勢監(jiān)測,、產(chǎn)量估算,、病蟲害監(jiān)測和預(yù)警的基礎(chǔ),。針對我國江南區(qū)域多云霧的特點,以Sentinel-1/2為數(shù)據(jù)源,綜合采用光學(xué)遙感影像和合成孔徑雷達(Synthetic aperture radar,,SAR)影像等多源數(shù)據(jù),,針對研究區(qū)作物早春覆膜的特點,構(gòu)建地膜植被指數(shù)(SAR plastic-film vegetation index,,SPVI),;利用時序光譜和植被指數(shù)特征,研究基于XGBoost算法的作物識別方法,。以安徽省宣城市宣州區(qū)為研究區(qū),,開展實例驗證研究。在作物生育期內(nèi),,云霧影響較大,,光學(xué)遙感覆蓋稀疏區(qū)域以Sentinel-2影像為主,獲取時序指數(shù)數(shù)據(jù)集,,增加4期Sentinel-1雷達影像,,用以補充云霧時期(5—7月)光學(xué)影像的缺失,。以本文設(shè)計的方法,得到作物識別總體精度為84.87%,,優(yōu)于隨機森林的83.93%,主要作物煙草制圖精度88.69%,,用戶精度95.51%,。僅使用生育期Sentinel-2影像的作物識別總體精度79.01%,主要作物煙草制圖精度82.30%,,用戶精度93.49%,。研究結(jié)果表明,本文構(gòu)建的基于XGBoost算法多源遙感作物識別方法可滿足多云多霧地區(qū)作物識別應(yīng)用要求,。

    Abstract:

    Rapid and accurate acquisition of crop acreage information is helpful for crop growth monitoring, yield estimation, pest monitoring and early warning. Sentinel-1/2 was used as the data source for the characteristics of cloud and fog in Jiangnan region of China,,and multi-source data was used, such as optical remote sensing images and synthetic aperture radar (SAR) images. Then, according to the characteristics of crop mulching in early spring, the SAR plastic-film vegetation index (SPVI) was constructed. A crop identification method based on XGBoost algorithm was studied by using time series spectrum and vegetation index characteristics.Finally,taking Xuanzhou District, Xuancheng City, Anhui Province as the research area, a case study was carried out to verify the results. Sentinel-2 images were used as the main method to obtain the time series index, and four Sentinel-1 radar images were added to supplement the optical images missing in the cloud and rain period (May to July). The overall accuracy in cloud coverage area was 84.87%, which was better than that of random forest (83.93%).And the accuracy of tobacco identification mapping was 88.69%, and the user's accuracy was 95.51%. The overall accuracy of the Sentinel-2 image was 79.01%, the mapping accuracy of tobacco was 82.30%, and the user's accuracy was 93.49%. The research results showed that the multi-source remote sensing crop identification method based on the constructed XGBoost algorithm can meet the accuracy requirements.

    參考文獻
    相似文獻
    引證文獻
引用本文

張超,陳暢,徐海清,薛琳.基于XGBoost算法的多云多霧地區(qū)多源遙感作物識別[J].農(nóng)業(yè)機械學(xué)報,2022,53(4):149-156. ZHANG Chao, CHEN Chang, XU Haiqing, XUE Lin. Multi-source Remote Sensing Crop Identification Based on XGBoost Algorithm in Cloudy and Foggy Area[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):149-156.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-04-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-27
  • 出版日期:
文章二維碼