ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于單階段目標(biāo)檢測(cè)算法的羊肉多分體實(shí)時(shí)分類檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0700804)


Mutton Multipartite Real-time Classification and Detection Based on Single-stage Object Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)輸送帶場(chǎng)景中羊肉分體需要進(jìn)一步分類檢測(cè)問題,,提出一種基于單階段目標(biāo)檢測(cè)算法的羊肉多分體實(shí)時(shí)分類檢測(cè)方法,。在羊屠宰車間環(huán)境下采集包含多類、多個(gè)羊肉分體圖像,,經(jīng)圖像增廣及歸一化后建立羊肉多分體圖像數(shù)據(jù)集,,其中訓(xùn)練集7200幅,測(cè)試集1400幅,,驗(yàn)證集400幅,。利用單階段目標(biāo)檢測(cè)算法YOLO v3引入遷移學(xué)習(xí)對(duì)羊肉多分體圖像數(shù)據(jù)集展開訓(xùn)練并獲得最優(yōu)模型,基于最優(yōu)模型返回圖像中各羊肉分體的類別及其位置,,從而實(shí)現(xiàn)羊肉分體的分類檢測(cè),。選用平均精度及單幅圖像平均處理時(shí)間作為評(píng)判模型檢測(cè)精度與速度指標(biāo)。然后通過更換羊肉多分體識(shí)別模型的特征提取網(wǎng)絡(luò)優(yōu)化檢測(cè)速度,。另外設(shè)置包含亮,、暗兩種亮度水平的附加光照數(shù)據(jù)集以及代表羊肉分體遮擋情形的附加遮擋數(shù)據(jù)集,分別驗(yàn)證優(yōu)化后模型的泛化能力與抗干擾能力,,并通過多尺度特征明顯的頸部與腹肋肉測(cè)試優(yōu)化后模型的魯棒性,。最后引入Mask R-CNN、Faster R-CNN、Cascade R-CNN和SSD 4種常用目標(biāo)檢測(cè)算法針對(duì)不同數(shù)據(jù)集分別進(jìn)行對(duì)比試驗(yàn),,在此基礎(chǔ)上,,進(jìn)一步更換特征提取網(wǎng)絡(luò)為MobileNet V1、ResNet34和ResNet50驗(yàn)證優(yōu)化后模型的綜合檢測(cè)能力,。試驗(yàn)結(jié)果表明,,優(yōu)化后模型的檢測(cè)速度較原始模型提升48.53%,同時(shí)對(duì)光照,、遮擋復(fù)雜環(huán)境下羊肉多分體識(shí)別具備較強(qiáng)的泛化能力與抗干擾能力,,以及對(duì)多尺度特征顯著的羊肉分體檢測(cè)具有良好的魯棒性,針對(duì)羊肉多分體圖像驗(yàn)證集,,優(yōu)化后羊肉多分體識(shí)別模型的平均精度達(dá)到88.05%,,單幅圖像處理時(shí)間為64.7ms,綜合檢測(cè)能力優(yōu)于其他算法,,說明該方法具備較高的檢測(cè)精度和良好的實(shí)時(shí)性,,能夠滿足實(shí)際生產(chǎn)需求。

    Abstract:

    Aiming at the problem that mutton multipartite needs to be further classified and detected in the conveyor belt scene, a real-time classification and detection method for mutton splits based on a single-stage object detection algorithm was proposed. In the sheep slaughter workshop environment, multiple types and multiple mutton split images were collected. After image augmentation and normalization, a mutton multipartite image data set was established, including 7200 training sets, 1400 test sets, and 400 verification sets. Using the single-stage object detection algorithm YOLO v3 to introduce transfer learning to train the mutton multipartite image data set and obtain the optimal model. Based on the optimal model, the category and position of each mutton split in the image were returned, so as to realize the classification and detection of mutton multipartite. The average accuracy mAP and the average detection time of a single image were selected as the accuracy and speed indicators for judging the detection effect of the model. Then, the detection speed was optimized by replacing the feature extraction network of the mutton multipartite recognition model. In addition, an additional illumination data set containing two brightness levels of “bright” and “dark” and an additional occlusion data set representing the occlusion situation of mutton were set to verify the generalization ability and anti-interference ability of the optimized model,,and the robustness of the optimized model was tested through the neck and abdominal rib with obvious multi-scale features. Finally, four commonly used object detection algorithms: Mask R-CNN, Faster R-CNN, Cascade R-CNN, and SSD were introduced to conduct comparative experiments on different data sets. On this basis, the feature extraction network was further replaced with MobileNet V1, ResNet34 and ResNet50 to verify the optimized model’s comprehensive testing capabilities. The test results showed that the detection speed of the optimized model was 48.53% higher than that of the original model. At the same time, it had strong generalization ability and anti-interference ability for multi-part recognition of mutton under complex environment of light and shading, and it had good robustness to the mutton multi-part detection with multi-scale features. It was optimized for the verification set of mutton multipartite image. The mAP value of the optimization model reached 88.05%, and the processing time of a single image was 64.7ms, the comprehensive detection ability was better than that of other algorithms, which indicating that this method had high detection accuracy and good real-time performance, and can meet actual production needs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙世達(dá),王樹才,郝廣釗,張一馳,楊華建.基于單階段目標(biāo)檢測(cè)算法的羊肉多分體實(shí)時(shí)分類檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):400-411. ZHAO Shida, WANG Shucai, HAO Guangzhao, ZHANG Yichi, YANG Huajian. Mutton Multipartite Real-time Classification and Detection Based on Single-stage Object Detection Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):400-411.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼