ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

獸藥致病命名實(shí)體Att-Aux-BERT-BiLSTM-CRF識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)項(xiàng)目(BAIC02-2020)和國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC1601803)


Recognition of Animal Drug Pathogenicity Named Entity Based on Att-Aux-BERT-BiLSTM-CRF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)獸藥致病知識(shí)圖譜構(gòu)建過程中,,關(guān)于獸藥命名實(shí)體識(shí)別使用傳統(tǒng)方法依賴人工設(shè)計(jì)特征耗時(shí)耗力以及獸藥致病語(yǔ)料數(shù)據(jù)量較少的問題,,提出一種引入注意力機(jī)制(Attention)與輔助層分類(Auxiliary layer)相結(jié)合獸藥文本命名實(shí)體識(shí)別模型(Att-Aux-BERT-BiLSTM-CRF),。通過BERT預(yù)處理模型進(jìn)行文本向量化,,然后連接雙向長(zhǎng)短期記憶網(wǎng)絡(luò)(Bi-directional long-short term memory,BiLSTM),;引入注意力機(jī)制,,將模型的BERT層輸出用作輔助分類層, BiLSTM層輸出作為主分類層(Mainlayer),,通過注意力機(jī)制組合以提高整體性能,;最后輸入條件隨機(jī)場(chǎng)(Conditional random field,CRF),,構(gòu)建端到端的適合于獸藥領(lǐng)域?qū)嶓w識(shí)別的深度學(xué)習(xí)模型框架,。實(shí)驗(yàn)選取獸藥文本共10643個(gè)句子,、485711個(gè)字符,針對(duì)動(dòng)物,、藥物,、不良反應(yīng)、攝入方式4類實(shí)體進(jìn)行識(shí)別,。實(shí)驗(yàn)結(jié)果表明,本文模型能有效地辨別獸藥致病文本中的實(shí)體,,識(shí)別的F1值為96.7%,。

    Abstract:

    In order to solve the problems that traditional methods of veterinary drug named entity recognition rely on artificial design features, which is time-consuming and labor-consuming, and the amount of veterinary drug pathogenic corpus data is less in the process of building veterinary drug pathogenic knowledge graph, a method based on Att-Aux-BERT-BiLSTM-CRF of veterinary drug text named entity recognition model was proposed, which combined BERT-BiLSTM-CRF models by introducing attention mechanism and auxiliary classification layer.The text was vectorized by the BERT preprocessing model, and then connected to bi-directional long-short term memory network.The auxiliary classification mechanism was introduced, the output of the BERT layer was used as the auxiliary classification layer, and the output of the BiLSTM layer was used as the main classification layer. The attention mechanism was proposed to combine auxiliary classification layer with main classification layer to improve the overall performance.Finally, it was sent to conditional random field to construct an end-to-end deep learning model framework suitable for veterinary drug name entity recognition.In the experiment, totally 10643 sentences and 485711 characters of veterinary drug text were selected to identify four kinds of entities: drug, adverse effect, intake mode, aimal. The results showed that the model can effectively identify the entities in the veterinary drug pathogenic text, and the F1 value of recognition was 96.7%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊璐,張?zhí)?鄭麗敏,田立軍.獸藥致病命名實(shí)體Att-Aux-BERT-BiLSTM-CRF識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):294-300. YANG Lu, ZHANG Tian, ZHENG Limin, TIAN Lijun. Recognition of Animal Drug Pathogenicity Named Entity Based on Att-Aux-BERT-BiLSTM-CRF[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):294-300.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-02-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼