ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v3的肉牛多目標(biāo)骨架提取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏智慧農(nóng)業(yè)產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心項(xiàng)目(2017DC53),、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601)和國(guó)家自然科學(xué)基金項(xiàng)目(41771315)


Multi-target Skeleton Extraction Method of Beef Cattle Based on Improved YOLO v3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)肉牛行為識(shí)別過(guò)程中,,多目標(biāo)骨架提取精度隨目標(biāo)數(shù)量增多而大幅降低的問(wèn)題,提出了一種改進(jìn)YOLO v3算法(Not classify RFB-YOLO v3,,NC-YOLO v3),在主干網(wǎng)絡(luò)后引入RFB(Receptive field block)擴(kuò)大模型感受野,,剔除分類模塊提高檢測(cè)效率,結(jié)合8SH(8-Stacked Hourglass)算法實(shí)現(xiàn)實(shí)際養(yǎng)殖環(huán)境下的肉牛多目標(biāo)檢測(cè)與骨架提取,。實(shí)驗(yàn)為肉牛骨架設(shè)置16個(gè)關(guān)鍵節(jié)點(diǎn)形成肉牛骨架點(diǎn)位信息,,通過(guò)對(duì)圖像多尺度和多方向訓(xùn)練提高檢測(cè)精度。針對(duì)多目標(biāo)骨架提取模型檢測(cè)的關(guān)鍵點(diǎn)信息進(jìn)行統(tǒng)計(jì)分析,,提出一種對(duì)肉牛站立和臥倒行為識(shí)別的方法,。實(shí)驗(yàn)結(jié)果表明:在目標(biāo)檢測(cè)方面,NC-YOLO v3模型的召回率可達(dá)99.00%,,精度可達(dá)97.80%,,平均精度可達(dá)97.18%。與原模型相比,平均精度提高4.13個(gè)百分點(diǎn),,去除的網(wǎng)絡(luò)參數(shù)量為13.81MB,;在單牛骨架提取方面,采用8層堆疊的Hourglass網(wǎng)絡(luò)檢測(cè)關(guān)鍵點(diǎn)位置,,平均精度均值可達(dá)90.75%,;在多牛骨架提取方面,NC-YOLO v3構(gòu)建的模型相對(duì)于YOLO v3構(gòu)建的模型,,平均精度均值提高4.11個(gè)百分點(diǎn),,達(dá)到66.05%。

    Abstract:

    In view of the problem that the extraction accuracy of beef cattle skeleton was decreased greatly with the increase of targets in the process of beef cattle behavior recognition, an improved YOLO v3 algorithm (Not classify RFB-YOLO v3, NC-YOLO v3) was proposed. After the backbone network, receptive field block (RFB) was introduced to expand the receptive field of the model, and the classification module was eliminated to improve the detection efficiency. Combining 8SH (8-Stacked Hourglass) algorithm to realize multi-target detection and skeleton extraction of beef cattle in actual breeding environment. In the experiment, totally 16 key nodes were set for the beef cattle skeleton to form the beef cattle pose point information, and the detection accuracy was improved through multi-scale and multi-direction training of the image. Based on the statistical analysis of key points of multi-target skeleton extraction model, a method for beef cattle standing and lying down behavior recognition was proposed. Experimental results showed that in terms of target detection, the recall of the NC-YOLO v3 model can reach 99.00%, the precision can reach 97.80%, and the average precision can reach 97.18%. Compared with the original model, average precision was increased by 4.13 percentage points, and the amount of network parameters removed was 13.81MB;in terms of single-ox skeleton extraction, the 8-Stacked Hourglass network was used to detect key point positions, and the mean average precision can reach 90.75%. In terms of multi cattle skeleton extraction, compared with the model constructed by YOLO v3, the mean average precision of the model constructed by NC-YOLO v3 was increased by 4.11 percentage points to 66.05%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,李永恒,周利香,汪潤(rùn),李書(shū)琴,王紅艷.基于改進(jìn)YOLO v3的肉牛多目標(biāo)骨架提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):285-293. ZHANG Hongming, LI Yongheng, ZHOU Lixiang, WANG Run, LI Shuqin, WANG Hongyan. Multi-target Skeleton Extraction Method of Beef Cattle Based on Improved YOLO v3[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):285-293.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼