ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機(jī)器視覺(jué)的田間小麥開(kāi)花期判定方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020KF002),、國(guó)家自然科學(xué)基金項(xiàng)目(31871543、31700644)和山東省農(nóng)機(jī)裝備研發(fā)創(chuàng)新計(jì)劃項(xiàng)目(2018YF004)


Determination Method of Field Wheat Flowering Period Baesd on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大量小麥育種材料花期難以精準(zhǔn),、快速檢測(cè)的問(wèn)題,,提出了一種基于綜合顏色特征和超像素分割算法的小麥開(kāi)花期判定方法。首先,,根據(jù)光照強(qiáng)度及圖像清晰度對(duì)綜合顏色特征的過(guò)紅顏色分量,、HSV顏色空間的S分量和紅綠歸一化顏色分量自適應(yīng)調(diào)節(jié),,增強(qiáng)小花和小穗的差異性,。其次,基于中心距離函數(shù)和灰度變化函數(shù)改進(jìn)超像素分割算法的聚類規(guī)則,,獲得由同質(zhì)特征的相鄰像素組成的圖像區(qū)域,。隨后,優(yōu)化圖像區(qū)域路徑搜索算法實(shí)現(xiàn)各圖像區(qū)域精確分割,,通過(guò)灰度和對(duì)比度指標(biāo)完成各圖像區(qū)域分類,,實(shí)現(xiàn)小花與小穗的精準(zhǔn)、快速分割,,并根據(jù)小花與小穗的比例完成開(kāi)花期判定,。實(shí)驗(yàn)結(jié)果表明,本文所提出算法平均計(jì)算時(shí)間為0.172s,,小花平均識(shí)別精度為91%,,小穗平均識(shí)別精度為90.9%,預(yù)測(cè)開(kāi)花率與實(shí)際開(kāi)花率的平均差值僅為1.16%,,滿足田間小麥開(kāi)花期判定基本要求,。

    Abstract:

    The timing of flowering is one of the important indexes of wheat breeding, but it is difficult to detect the flowering stage from a large number of wheat breeding materials accurately and quickly. A method to determine the flowering date of wheat based on comprehensive color features and super-pixel segmentation algorithm was proposed. Firstly, according to the light intensity and image clarity, the excess red color component of comprehensive color features, the saturation component of HSV color space and the normalized red green color component were adaptively adjusted to enhance the difference between florets and spikelets. Secondly, the clustering rules of the super-pixel segmentation algorithm were improved based on the center distance function and the gray change function to obtain the image region composed of adjacent pixels with homogeneous features. Then the image area path search algorithm was optimized to achieve accurate segmentation of each image area, and the classification of each image area was completed through grayscale and contrast indicators to achieve accurate and rapid segmentation of florets and spikelets, and the flowering period was determined according to the proportion of floret and spikelet. The experimental results showed that the average computing time of the proposed algorithm was 0.172s, the average recognition accuracy of floret was 91%, the average recognition accuracy of spikelet was 90.9%, the average error between the predicted flowering rate and the actual was only 1.16%, which met the basic requirements of determining the flowering date of wheat in the field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉平,劉立鵬,王春穎,朱衍俊,王宏偉,李祥.基于機(jī)器視覺(jué)的田間小麥開(kāi)花期判定方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):251-258. LIU Ping, LIU Lipeng, WANG Chunying, ZHU Yanjun, WANG Hongwei, LI Xiang. Determination Method of Field Wheat Flowering Period Baesd on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):251-258.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼