ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量級(jí)殘差網(wǎng)絡(luò)的植物葉片病害識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601),、陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021NY-138)和中央高?;究蒲袠I(yè)務(wù)專項(xiàng)資金項(xiàng)目


Plant Leaf Disease Identification Based on Lightweight Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)基于卷積神經(jīng)網(wǎng)絡(luò)的植物葉片病害識(shí)別方法存在網(wǎng)絡(luò)參數(shù)眾多,、計(jì)算量大且復(fù)雜的問題,,結(jié)合植物葉片病害特征,提出了一種基于輕量級(jí)殘差網(wǎng)絡(luò)(Scale-Down ResNet)的植物葉片病害識(shí)別方法,。網(wǎng)絡(luò)基于Residual Network(ResNet),,通過縮減網(wǎng)絡(luò)卷積核數(shù)目和輕量級(jí)殘差模塊(SD-BLOCK),在大幅減少網(wǎng)絡(luò)參數(shù),、降低計(jì)算復(fù)雜度的同時(shí)保持了低識(shí)別錯(cuò)誤率,,然后加入Squeeze-and-Excitation模塊進(jìn)一步降低識(shí)別錯(cuò)誤率。在PlantVillage數(shù)據(jù)集上的實(shí)驗(yàn)表明,,在網(wǎng)絡(luò)參數(shù)量8×104,,計(jì)算量MFLOPs為55的情況下,模型識(shí)別錯(cuò)誤率為0.55%,。當(dāng)參數(shù)量達(dá)到2.8×105,,計(jì)算量MFLOPs為176時(shí),模型識(shí)別錯(cuò)誤率為0.32%,,低于ResNet-18,,并且參數(shù)量約為其1/39,計(jì)算量約為其1/10。相比MobileNet V3和ShuffleNet V2,,所提網(wǎng)絡(luò)模型更為輕量,,識(shí)別錯(cuò)誤率更低。同時(shí)網(wǎng)絡(luò)在自建蘋果葉片病害數(shù)據(jù)集上獲得了1.52%的低識(shí)別錯(cuò)誤率,。

    Abstract:

    The plant leaf disease recognition method based on convolutional neural network has the problem of numerous network parameters,large amount of calculation and complexity.To solve this problem,combined with the characteristics of plant leaf diseases,a plant leaf disease recognition method based on lightweight residual network (Scale-Down ResNet) was proposed.The network was based on Residual Network (ResNet),by reducing the number of convolution kernels and the network module of SD-BLOCK,the network parameters and computational complexity were greatly reduced,while the recognition error rate was kept low.Then the Squeeze-and-Excitation module was added to further reduce the recognition error rate.Experiments on the PlantVillage data set showed that when parameters were 8×104 and calculation amout MFLOPs was 55,the recognition error rate of model was 0.55%.When parameters reached 2.8×105 and calculation amount MFLOPs was 176,the recognition error rate of model was 0.32%,which was lower than that of ResNet-18,and the parameter was about 1/39 of ResNet-18 and the amount of calculation was about 1/10 of ResNet-18. Compared with MobileNet V3 and ShuffleNet V2,the proposed network model was lighter and had lower recognition error rate.At the same time,the low recognition error rate of 1.52% was obtained on self built apple leaf disease data set.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李書琴,陳聰,朱彤,劉斌.基于輕量級(jí)殘差網(wǎng)絡(luò)的植物葉片病害識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):243-250. LI Shuqin, CHEN Cong, ZHU Tong, LIU Bin. Plant Leaf Disease Identification Based on Lightweight Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):243-250.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼