ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的模糊農(nóng)田圖像中障礙物檢測技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省科技計劃項目(BK20151436)和江蘇高?!扒嗨{(lán)工程”項目


Obstacle Detection Based on Deep Learning for Blurred Farmland Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對圖像實時采集時,,由于鏡頭缺陷、相機(jī)抖動、目標(biāo)運動等原因造成的模糊圖像輸入,,導(dǎo)致訓(xùn)練完成的深度學(xué)習(xí)模型檢測準(zhǔn)確率下降問題,,本文提出一種基于改進(jìn)Faster R-CNN和SSRN-DeblurNet的兩階段檢測方法,用于農(nóng)田環(huán)境模糊圖像中的障礙物檢測,。第1階段進(jìn)行銳度評價和去模糊處理,,利用簡化尺度循環(huán)網(wǎng)絡(luò)(Simplified scale recurrent networks,SSRN-DeblurNet)對模糊農(nóng)田圖像進(jìn)行去模糊,。第2階段進(jìn)行障礙物檢測,,在原有的Faster R-CNN網(wǎng)絡(luò)中添加了候選區(qū)域優(yōu)化網(wǎng)絡(luò)來提高區(qū)域候選網(wǎng)絡(luò)中的目標(biāo)區(qū)域質(zhì)量。在自制的模糊數(shù)據(jù)集上,,利用所提出的兩階段檢測方法對8種農(nóng)田障礙物進(jìn)行檢測,。與原始Faster R-CNN相比,兩階段檢測方法的平均精度均值(mAP)提高了12.32個百分點,,單幅圖像的平均檢測時間為0.53s,。所提出的兩階段方法能有效減少模糊農(nóng)田圖像中障礙物的誤檢和漏檢,滿足拖拉機(jī)低速作業(yè)的實時檢測需求,。

    Abstract:

    When it is in real-time image acquisition, image blurring caused by lens defects, camera jitter, target movement and so on will result in poor precision of target detection by using the trained deep learning model. Here, a two-stage detection model based on an improved Faster R-CNN and an SSRN-DeblurNet was proposed to perform obstacle detection for blurred farmland images. In the first stage, sharpness evaluation and deblurring were carried out, and the simplified scale recurrent networks (SSRN-〖JP〗DeblurNet) was used for deblurring of blurred farmland images. In the second stage, obstacle detection was implemented by using the improved Faster R-CNN which was added a proposal region optimization network to improve the quality of the regions in the region proposal networks. Then, the proposed two-stage detection model was used to detect eight types of farmland obstacles with self-made blurred dataset. Compared with the original Faster R-CNN, the mean average precision (mAP) value was increased by 12.32 percentage points, and the average detection time of a single image was 0.53s. The results showed that the proposed two-stage model can not only effectively reduce the false detection and missing detection of obstacles in blurred farmland images, but also can meet the real-time detection requirements of tractors operating at low speeds.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

薛金林,李雨晴,曹梓建.基于深度學(xué)習(xí)的模糊農(nóng)田圖像中障礙物檢測技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(3):234-242. XUE Jinlin, LI Yuqing, CAO Zijian. Obstacle Detection Based on Deep Learning for Blurred Farmland Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):234-242.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼