ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

土地利用/覆被深度學(xué)習(xí)遙感分類(lèi)研究綜述
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFE0102300)和國(guó)家自然科學(xué)基金項(xiàng)目(42001367)


Review for Deep Learning in Land Use and Land Cover Remote Sensing Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于遙感分類(lèi)實(shí)現(xiàn)高精度的土地利用和土地覆被制圖是研究熱點(diǎn)問(wèn)題,。近年來(lái),以卷積神經(jīng)網(wǎng)絡(luò)為代表的深度學(xué)習(xí)在計(jì)算機(jī)視覺(jué)領(lǐng)域取得了長(zhǎng)足發(fā)展,,同時(shí)也被引入到土地利用/覆被遙感制圖領(lǐng)域,。相比于經(jīng)典機(jī)器學(xué)習(xí),深度學(xué)習(xí)的優(yōu)勢(shì)表現(xiàn)為能夠自適應(yīng)提取與分類(lèi)任務(wù)最相關(guān)的特征,,其缺陷表現(xiàn)為分類(lèi)精度的提高依賴(lài)于海量標(biāo)簽樣本,。基于深度學(xué)習(xí)在土地利用/覆被分類(lèi)中日益增多的研究成果,,本文從樣本,、模型、算法3個(gè)角度對(duì)其研究進(jìn)展進(jìn)行綜述,。在樣本方面,,歸納總結(jié)了常用的土地利用/覆被樣本集,并分析了上述樣本集的學(xué)術(shù)影響力,;在模型方面,,綜述了土地利用/覆被分類(lèi)中常用的深度學(xué)習(xí)模型,包括卷積神經(jīng)網(wǎng)絡(luò),、循環(huán)神經(jīng)網(wǎng)絡(luò),、全卷積神經(jīng)網(wǎng)絡(luò)等的最新研究成果;在算法方面,,綜述了樣本稀疏條件下的土地利用/覆被分類(lèi)算法的最新研究進(jìn)展,,具體包括主動(dòng)學(xué)習(xí)、半監(jiān)督學(xué)習(xí),、弱監(jiān)督學(xué)習(xí),、自監(jiān)督學(xué)習(xí)、遷移學(xué)習(xí)等,。最后從樣本,、模型、算法3個(gè)角度對(duì)未來(lái)研究方向進(jìn)行展望,,通過(guò)構(gòu)建大規(guī)模遙感樣本數(shù)據(jù)集,、持續(xù)優(yōu)化深度學(xué)習(xí)模型結(jié)構(gòu)、提升樣本稀疏條件下深度學(xué)習(xí)模型的時(shí)空泛化能力等研究,,可以進(jìn)一步改善土地利用/覆被分類(lèi)效果和精度,。

    Abstract:

    Accurate land use and land cover (LULC) mapping based on remote sensing image classification has been a hot topic nowadays. Recently, deep learning, especially convolutional neural network, has achieved promising results in computer vision tasks, which has also been introduced into the field of LULC mapping. Compared with classic machine learning methods, deep learning is capable of extracting the most representative features from remote sensing images, however, its performance is depended on massive labeled data. Considering deep learning has been widely used in LULC classification, the objective was to provide a comprehensive review of deep learning from the following perspectives as sample dataset, model structure and training strategy. Specifically, from the perspective of samples, the most commonly used LULC sample dataset was summarized and their academic influence was analyzed. From the perspective of models, the latest research of deep learning models were reviewed, including convolutional neural network, recurrent neural network, fully convolutional network. From the perspective of training strategies, various training methods that could tackle the data-hunger issue of deep learning were summarized, including active learning, semi-supervised learning, weakly-supervised learning, self-supervised learning, transfer learning. Finally, an outlook of deep learning in LULC mapping was provided, which was still from three perspectives of sample dataset, model structure and training strategy. Through the construction of large-scale LULC sample dataset, improvement of deep learning model structure and the increase of spatial-temporal generalization capability under limited samples, LULC remote sensing classification could yield a better performance and accuracy in future study.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮權(quán)瀧,牛博文,朱德海,陳泊安,張超,楊建宇.土地利用/覆被深度學(xué)習(xí)遙感分類(lèi)研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(3):1-17. FENG Quanlong, NIU Bowen, ZHU Dehai, CHEN Boan, ZHANG Chao, YANG Jianyu. Review for Deep Learning in Land Use and Land Cover Remote Sensing Classification[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):1-17.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-03-10
  • 出版日期:
文章二維碼