ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于幅值迭代剪枝的多目標奶牛進食行為識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

內蒙古自治區(qū)科技重大專項(2019ZD025)


Detection Method of Multi-objective Cows Feeding Behavior Based on Iterative Magnitude Pruning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對奶牛進食行為監(jiān)測通常要為每頭奶牛配備監(jiān)測設備,,但受限于設備成本,,很多應用于奶牛養(yǎng)殖場的奶牛行為監(jiān)測方法難以普及的問題,提出了一種多目標奶牛進食行為識別方法,,基于YOLO v3算法,,根據(jù)目標差異,將牛舍中的奶牛分為3類目標來實現(xiàn)奶牛進食行為監(jiān)測,,以通過單臺設備監(jiān)測多頭奶牛的進食行為,。YOLO v3算法具有計算成本高、能源消耗大,、設備依賴性強等不足,,針對該問題,參考彩票假設,,提出了一種基于幅值迭代剪枝算法的更優(yōu)稀疏子網絡篩選方法,,使參數(shù)數(shù)量下降了87.04%,,平均精度均值(mAP)達到了79.9%,,較原始網絡提高了4.2個百分點,。說明了通過幅值迭代剪枝技術降低奶牛行為監(jiān)測任務成本的可行性,,驗證了基于彩票假設從奶牛進食行為識別模型中篩選出更優(yōu)稀疏子網絡的有效性,,為降低動物行為監(jiān)測任務的成本提供了參考,。

    Abstract:

    The existing methods for monitoring the cows dietetic behavior do not allow monitoring of multiple cows simultaneously through a single device. A multi-objective cow dietetic behavior identification method was proposed based on the YOLO v3 algorithm. According to the difference in the goals, the cows to be monitored were classified to three groups to achieve dietetic behavior monitoring of multiple cows with a single device. However, the YOLO v3 algorithm has some disadvantages, such as high computational cost, large energy consumption, and strong equipment dependence. So the lottery ticket hypothesis was referred to apply this approach. And an iterative magnitude pruning algorithm for the identification of cow dietetic behavior based on the YOLO v3 network was proposed. Using this approach, the number of parameters was decreased by 87.04%, the mean average precision (mAP) value reached 79.9%, which was increased by 4.2 percentage points. Nevertheless, results proved that through the iterative magnitude pruning technique, the cow behavior monitoring task was feasible at a reduced cost. The effectiveness of screening out the optimal sparse subnetwork from the cow dietetic behavior identification model based on the lottery ticket hypothesis was verified.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉月峰,邊浩東,何瀅婕,郭威,張小燕.基于幅值迭代剪枝的多目標奶牛進食行為識別方法[J].農業(yè)機械學報,2022,53(2):274-281. LIU Yuefeng, BIAN Haodong, HE Yingjie, GUO Wei, ZHANG Xiaoyan. Detection Method of Multi-objective Cows Feeding Behavior Based on Iterative Magnitude Pruning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):274-281.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-02-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-02-28
  • 出版日期:
文章二維碼