ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CenterNet的密集場景下多蘋果目標快速識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省科技重大專項(2020zdzx03-04-01)和國家重點研發(fā)計劃項目(2016YFD0700503)


Fast Recognition Method for Multiple Apple Targets in Dense Scenes Based on CenterNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高蘋果采摘機器人的識別效率和環(huán)境適應(yīng)性,,使其能在密集場景下對多蘋果目標進行快速,、精確識別,提出了一種密集場景下多蘋果目標的快速識別方法,。該方法借鑒“點即是目標”的思路,,通過預(yù)測蘋果的中心點及該蘋果的寬、高尺寸,,實現(xiàn)蘋果目標的快速識別,;通過改進CenterNet網(wǎng)絡(luò),設(shè)計了Tiny Hourglass-24輕量級骨干網(wǎng)絡(luò),,同時優(yōu)化殘差模塊提高了目標識別速度,。試驗結(jié)果表明,該方法在非密集場景下(即近距離場景)測試集的識別平均精度(Average precision,AP)為98.90%,,F(xiàn)1值為96.39%,;在密集場景下(即遠距離場景)測試集的識別平均精度為93.63%,F(xiàn)1值為92.91%,,單幅圖像平均識別時間為0.069s,。通過與YOLO v3、CornerNet-Lite網(wǎng)絡(luò)在兩類測試集下的識別效果進行對比,,該方法在密集場景測試集上比YOLO v3和CornerNet-Lite網(wǎng)絡(luò)的平均精度分別提高了4.13,、29.03個百分點;單幅圖像平均識別時間比YOLO v3減少0.04s,、比CornerNet-Lite減少0.646s,。該方法無需使用錨框(Anchor box)和非極大值抑制后處理,可為蘋果采摘機器人在密集場景下快速準確識別多蘋果目標提供技術(shù)支撐,。

    Abstract:

    In order to improve the recognition efficiency and environmental adaptability of the apple picking robot, so that it can quickly and accurately recognize multiple apple targets in dense scenes, a rapid recognition method for multiple apple targets in dense scenes was proposed. The method drew on the idea of “point is the target”, and realized the rapid identification of apple targets by predicting the center point of apple and the width and height of apple. By improving the CenterNet network, the Tiny Hourglass-24 lightweight backbone network was designed, and the residual module was optimized to improve the target recognition speed. The test results showed that the average recognition accuracy of this method on the test set in non-dense scenes (images taken in close-range scenes) was 98.90%, and F1 was 96.39%. In the dense scene (images taken in the remote scene), the recognition average precision (AP) of the test set was 93.63%, the F1 was 92.91%, and the average recognition time of a single image was 0.069s. By comparing with the recognition effect of YOLO v3 and CornerNet-Lite network under the two types of test sets, the AP of this method was increased by 4.13 percentage points and 29.03 percentage points respectively on the dense scene test set. The average image recognition time was 0.04s faster than that of YOLO v3 and 0.646s faster than that of CornerNet-Lite. This method did not need to use anchor box and non-maximum suppression post-processing, and can provide technical support for the apple picking robot to quickly and accurately identify multiple apple targets in dense scenes.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊福增,雷小燕,劉志杰,樊攀,閆彬.基于CenterNet的密集場景下多蘋果目標快速識別方法[J].農(nóng)業(yè)機械學報,2022,53(2):265-273. YANG Fuzeng, LEI Xiaoyan, LIU Zhijie, FAN Pan, YAN Bin. Fast Recognition Method for Multiple Apple Targets in Dense Scenes Based on CenterNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):265-273.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-02-21
  • 出版日期:
文章二維碼