ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于實例分割和光流計算的死兔識別模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農業(yè)農村部:國家現代農業(yè)產業(yè)技術體系項目(CARS-43-D-3)


Dead Rabbit Recognition Model Based on Instance Segmentation and Optical Flow Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現自動化識別死兔,提高養(yǎng)殖管理效率,以籠養(yǎng)生長兔為研究對象,以基于優(yōu)化Mask RCNN的實例分割網絡和基于LiteFlowNet的光流計算網絡為研究方法,構建了一種多目標背景下基于視頻關鍵幀的死兔識別模型。該模型的實例分割網絡以ResNet 50殘差網絡為主干,結合PointRend算法實現目標輪廓邊緣的精確提取。視頻關鍵幀同時輸入實例分割網絡和光流計算網絡,獲取肉兔掩膜的光流信息和掩膜邊界框中心點坐標。利用光流閾值去除活躍肉兔掩膜,通過核密度估計算法獲取剩余中心點坐標的密度分布,通過密度分布閾值實現死兔的判別。實驗結果表明,肉兔圖像分割網絡的分類準確率為96.1%,像素分割精確度為95.7%,死兔識別模型的識別準確率為90%。本文提出的死兔識別模型為兔舍死兔識別和篩選工作提供了技術支撐。

    Abstract:

    Screening and isolating dead rabbits is one of the important work of meat rabbit farms, which is helpful to build a rabbit breeding safety system. In order to identify dead rabbits automatically and improve the efficiency of breeding management, cage-rearing breeding rabbits was taken as the research object, a dead rabbit recognition model was proposed which was based on the modified Mask RCNN and LiteFlowNet. The instance segmentation part of the model used ResNet 50 residual network as the backbone, used PointRend algorithm as the network head to extract the instance contour accurately. The key frames of the rabbit videos were sent to rabbit instance segmentation network and optical flow calculation network at the same time to obtain the optical flow of the meat rabbit mask and the center point coordinates of the instance boundary boxes. The masks of the active rabbits were removed by the threshold of the optical flow, and then the density distribution of the remaining center point coordinates was obtained by kernel density estimation algorithm, and the dead rabbits were distinguished by density distribution threshold. The experiment results showed that the classification accuracy of the rabbit segmentation network was 96.1%, the pixel segmentation accuracy of the rabbit segmentation network was 95.7%, and the recognition accuracy of the dead rabbit recognition model was 90%. This study provided technical support for dead rabbit recognizing and isolating in rabbit farms.

    參考文獻
    相似文獻
    引證文獻
引用本文

段恩澤,王糧局,雷逸群,郝宏運,王紅英.基于實例分割和光流計算的死兔識別模型研究[J].農業(yè)機械學報,2022,53(2):256-264,273. DUAN Enze, WANG Liangju, LEI Yiqun, HAO Hongyun, WANG Hongying. Dead Rabbit Recognition Model Based on Instance Segmentation and Optical Flow Computing[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):256-264,273.

復制
相關視頻

分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-21
  • 出版日期:
文章二維碼