ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于MSRCR-YOLOv4-tiny的田間玉米雜草檢測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(32001419),、財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-18-ZJ0402)和山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(SDAIT-18-06)


Target Detection Model of Corn Weeds in Field Environment Based on MSRCR Algorithm and YOLOv4-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)田間環(huán)境下對(duì)玉米苗和雜草的高精度實(shí)時(shí)檢測(cè),本文提出一種融合帶色彩恢復(fù)的多尺度視網(wǎng)膜(Multi-scale retinex with color restoration,,MSRCR)增強(qiáng)算法的改進(jìn)YOLOv4-tiny模型,。首先,針對(duì)田間環(huán)境的圖像特點(diǎn)采用MSRCR算法進(jìn)行圖像特征增強(qiáng)預(yù)處理,,提高圖像的對(duì)比度和細(xì)節(jié)質(zhì)量,;然后使用Mosaic在線數(shù)據(jù)增強(qiáng)方式,豐富目標(biāo)檢測(cè)背景,,提高訓(xùn)練效率和小目標(biāo)的檢測(cè)精度;最后對(duì)YOLOv4-tiny模型使用K-means〖DK2〗++聚類算法進(jìn)行先驗(yàn)框聚類分析和通道剪枝處理,。改進(jìn)和簡(jiǎn)化后的模型總參數(shù)量降低了45.3%,,模型占用內(nèi)存減少了45.8%,平均精度均值(Mean average precision,,mAP)提高了2.5個(gè)百分點(diǎn),,在Jetson Nano嵌入式平臺(tái)上平均檢測(cè)幀耗時(shí)減少了22.4%。本文提出的Prune-YOLOv4-tiny模型與Faster RCNN,、YOLOv3-tiny,、YOLOv4 3種常用的目標(biāo)檢測(cè)模型進(jìn)行比較,結(jié)果表明:Prune-YOLOv4-tiny的mAP為96.6%,,分別比Faster RCNN和YOLOv3-tiny高22.1個(gè)百分點(diǎn)和3.6個(gè)百分點(diǎn),,比YOLOv4低1.2個(gè)百分點(diǎn);模型占用內(nèi)存為12.2MB,,是Faster RCNN的3.4%,,YOLOv3-tiny的36.9%,YOLOv4的5%,;在Jetson Nano嵌入式平臺(tái)上平均檢測(cè)幀耗時(shí)為131ms,,分別是YOLOv3-tiny和YOLOv4模型的32.1%和7.6%??芍疚奶岢龅膬?yōu)化方法在模型占用內(nèi)存,、檢測(cè)耗時(shí)和檢測(cè)精度等方面優(yōu)于其他常用目標(biāo)檢測(cè)算法,能夠?yàn)橛布Y源有限的田間精準(zhǔn)除草的系統(tǒng)提供可行的實(shí)時(shí)雜草識(shí)別方法,。

    Abstract:

    To solve the problem of low accuracy and poor realtime performance of weed recognition in corn field, a detection method of weed based on multiscale retinex with color restoration (MSRCR)and improved YOLOv4-tiny algorithm was proposed. Firstly, according to the image characteristics of weed in corn field environment, the MSRCR algorithm was used for image feature enhancement preprocessing to improve the image contrast and detail quality. Then, Mosaic online data augmentation method was used to enrich the object detection background, improve the training efficiency and the detection accuracy of small objects. Finally, The K-means++ was used for a priori anchor boxes clustering analysis and channel pruning for the YOLOv4-tiny model. The total parameters of the improved and simplified model were reduced by 45.3%, the model size was reduced by 458%, the mean average precision(mAP)was increased by 2.5 percentage points, and the average detection frame time on the Jetson Nano embedded platform was reduced by 22.4%. The proposed Prune-YOLOv4-tiny model was compared with Faster RCNN, YOLOv3-tiny, and YOLOv4, the experimental results showed that the mAP of the Prune-YOLOv4-tiny model was 96.6%, which was 22.1 percentage points and 3.6 percentage points higher than that of the Faster RCNN and YOLOv3-tiny, and 1.2 percentage points lower than that of the YOLOv4 model; the model size of the Prune-YOLOv4-tiny was 12.2MB, which was 3.4% of the Faster RCNN, 36.9% of the YOLOv3-tiny, and 5% of the YOLOv4; the average detection frame time on the Jetson Nano embedded platform was 131ms, which was 32.1% of the YOLOv3-tiny and 7.6% of YOLOv4. The optimization method proposed was superior to other commonly used object detection algorithms in model size, detection time and detection accuracy, which could provide a feasible real-time weed recognition method for the field precision weeding system with limited hardware resources.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉莫塵,高甜甜,馬宗旭,宋占華,李法德,閆銀發(fā).基于MSRCR-YOLOv4-tiny的田間玉米雜草檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):246-255,,335. LIU Mochen, GAO Tiantian, MA Zongxu, SONG Zhanhua, LI Fade, YAN Yinfa. Target Detection Model of Corn Weeds in Field Environment Based on MSRCR Algorithm and YOLOv4-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):246-255,,335.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-12-13
  • 出版日期:
文章二維碼