ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于近紅外高光譜的梨葉片炭疽病與黑斑病識(shí)別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-29-14)、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0201401)和安徽省教育廳項(xiàng)目(KJ2019A0212)


Identifying Anthracnose and Black Spot of Pear Leaves on Near-infrared Hyperspectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)梨炭疽病和黑斑病發(fā)病癥狀很相似,,難以區(qū)分,,導(dǎo)致實(shí)際生產(chǎn)中不便對(duì)癥施藥的問題,以碭山酥梨葉片為研究對(duì)象,,探究利用高光譜技術(shù)來識(shí)別梨葉片炭疽病與黑斑病的可行性,。首先,運(yùn)用高光譜成像系統(tǒng)采集碭山酥梨正常葉片、炭疽病葉片和黑斑病葉片的高光譜圖像,,提取圖像的平均光譜反射率,。采用多元散射校正法(Multiplicative scatter correction, MSC)、Savitzky-Golay卷積平滑法和標(biāo)準(zhǔn)正態(tài)變換法(Standard normal variate, SNV)分別對(duì)原始光譜數(shù)據(jù)進(jìn)行預(yù)處理,。然后,,采用主成分分析算法(Principal component analysis, PCA)、連續(xù)投影算法(Successive projections algorithm, SPA),、無信息變量消除法(Uniformative variable elimination, UVE),、競爭性自適應(yīng)重加權(quán)算法(Competitive adaptive reweighted sampling, CARS)、隨機(jī)蛙跳算法(Shuffled frog leaping algorithm, SFLA)提取特征波長,,分別獲取了27,、12、15,、26,、20條特征波長,并將其作為后期建模的輸入變量,。經(jīng)對(duì)比發(fā)現(xiàn),,在各基于特征波長建立的支持向量機(jī)(SVM)分類識(shí)別模型以及BP神經(jīng)網(wǎng)絡(luò)分類識(shí)別模型中,,SPA-SVM識(shí)別模型效果最佳,,測試集準(zhǔn)確率為93.25%,建模集準(zhǔn)確率為94.80%,。試驗(yàn)結(jié)果證明,,利用高光譜技術(shù)能夠有效識(shí)別碭山酥梨葉片的黑斑病與炭疽病。

    Abstract:

    Pear anthracnose and pear black spot are serious diseases that occur during the growth of pears. The symptoms of these two diseases are very similar and it is difficult to distinguish, which leads to the inconvenience of prescribing the right medicine to these two kinds of leaves in actual production. In response to the status quo, taking ‘Dangshan'pear leaves as the study object, the feasibility of using hyperspectral technology to identify anthracnose and black spot on pear leaves was explored. First of all, the hyperspectral imaging system was used to collect the hyperspectral images of the normal leaves, anthracnose leaves and black spot leaves of ‘Dangshan' pear, and extract the average spectral reflectance of the images. The multiplicative scatter correction method (MSC), Savitzky-Golay convolution smoothing method and standard normal variate method (SNV) were used respectively to preprocess the original spectral data. Then the principal component analysis (PCA), successive projections algorithm (SPA), uniformative variable elimination (UVE), competitive adaptive reweighted sampling algorithm (CARS), and shuffled frog leaping algorithm(SFLA) were used to extract characteristic wavelengths, respectively, and totally 27, 12, 15, 26 and 20 characteristic wavelengths were obtained, and using them as input variables for later modeling. After comparison, it was found that in the support vector machine (SVM) classification and recognition model based on characteristic wavelength and the BP neural network classification and recognition model based on characteristic wavelength, the SPA-SVM recognition model had the best effect during all models, the accuracy rate of the model's test set was 93.25%, and the accuracy rate of the model's modeling set was 94.80%. The test results proved that hyperspectral technology can effectively identify the black spot and anthracnose of ‘Dangshan’ pear leaves.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉莉,陶紅燕,方靜,鄭文娟,王良龍,金秀.基于近紅外高光譜的梨葉片炭疽病與黑斑病識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):221-230. LIU Li, TAO Hongyan, FANG Jing, ZHENG Wenjuan, WANG Lianglong, JIN Xiu. Identifying Anthracnose and Black Spot of Pear Leaves on Near-infrared Hyperspectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):221-230.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-02-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-20
  • 出版日期:
文章二維碼