ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Sentinel-1A雙極化時(shí)序數(shù)據(jù)的甘蔗株高反演方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61672007)、自然資源部大灣區(qū)地理環(huán)境監(jiān)測(cè)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(2019002)、廣東省海洋與漁業(yè)廳漁港建設(shè)和漁業(yè)發(fā)展專項(xiàng)(A201701D04)和廣東省國(guó)際合作領(lǐng)域項(xiàng)目(2019A050509009)


Inversion Method of Sugarcane Plant Height Based on Sentinel-1A Dual-polarization Time Series Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    甘蔗株高為甘蔗品種與土壤、氣象、水文等因素的綜合反映,是甘蔗長(zhǎng)勢(shì)監(jiān)測(cè)與估產(chǎn)的重要指標(biāo)。研究以華南地區(qū)氣候與天氣條件為基礎(chǔ),通過(guò)對(duì)覆蓋甘蔗全生長(zhǎng)期的23景時(shí)間序列Sentinel-1A數(shù)據(jù)進(jìn)行預(yù)處理、矩陣轉(zhuǎn)換與Cloude-Pottier分解,求得雙極化雷達(dá)植被指數(shù)(Dual-pol radar vegetation index, DPRVI)。分析了該指數(shù)與甘蔗長(zhǎng)勢(shì)參數(shù)(株高)隨甘蔗不同生長(zhǎng)期的動(dòng)態(tài)變化規(guī)律。采用4種經(jīng)典的經(jīng)驗(yàn)回歸模型(線性、二次多項(xiàng)式、指數(shù)、對(duì)數(shù)),以分段函數(shù)形式對(duì)不同生長(zhǎng)期的甘蔗株高進(jìn)行反演,建立最佳反演模型。實(shí)驗(yàn)結(jié)果表明,擬合模型在分蘗期前相關(guān)性最高,二次多項(xiàng)式模型擬合效果最優(yōu),決定系數(shù)R2與均方根誤差分別達(dá)到了0.882與0.118cm,對(duì)反演效果最好的分蘗期之前的二次函數(shù)模型進(jìn)行驗(yàn)證,結(jié)果表明決定系數(shù)R2達(dá)0.839,平均絕對(duì)偏差為7.4%,說(shuō)明DPRVI反演甘蔗株高是有效的。將DPRVI與其他3種經(jīng)典的反演參數(shù)進(jìn)行對(duì)比,結(jié)果表明,DPRVI的性能優(yōu)于其他3種參數(shù)。通過(guò)分析可得,DPRVI可以較好地反演甘蔗生長(zhǎng)前期的株高變化,反演的株高參數(shù)可供農(nóng)業(yè)管理部門參考。

    Abstract:

    Sugarcane plant height is a comprehensive reflection of soil, meteorology, hydrology and other factors, and it is also an important index for sugarcane growth monitoring and yield estimation. Based on the climate and weather conditions in South China, the dual-pol radar vegetation index (DPRVI) was obtained by preprocessing, matrix transformation and Cloude-Pottier decomposition of the time series Sentinel-1A data of 23 landscapes covering the whole growth period of sugarcane. The dynamic changes of this index and sugarcane growth parameters (plant height) with different growth periods of sugarcane were analyzed. Then four classic empirical regression models (linear, quadratic polynomial, exponential and logarithmic) were used to invert the height of sugarcane plants in different growth periods in the form of piecewise function to establish the best inversion model. Through the experimental results, it can be found that the fitting model had the highest correlation before the tillering stage, and the quadratic polynomial model had the best fitting effect. The determination coefficient R2 and the root mean square error were 0.882 and 0.118cm, respectively. Then the quadratic function model with the best inversion effect before tillering stage was verified and analyzed. The results showed that the determination coefficient R2 was up to 0.839, and the average absolute deviation was 7.4%, which indicated that the model could better guarantee the accuracy of predicting plant height by using DPRVI. Finally, DPRVI was compared and analyzed with other three classical remote sensing parameters. The results showed that the performance of DPRVI was better than that of the other three parameters. Through the analysis, it was concluded that DPRVI can better invert the change of plant height in the early growth stage of sugarcane, and the parameters of plant height can be used as a reference for agricultural management departments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫盛,劉立露,胡忠文,余旭.基于Sentinel-1A雙極化時(shí)序數(shù)據(jù)的甘蔗株高反演方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):186-194. SUN Sheng, LIU Lilu, HU Zhongwen, YU Xu. Inversion Method of Sugarcane Plant Height Based on Sentinel-1A Dual-polarization Time Series Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):186-194.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-21
  • 出版日期:
文章二維碼