ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多核主動學(xué)習(xí)和多源數(shù)據(jù)融合的農(nóng)田塑料覆被分類
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(42001367)和國家重點研發(fā)計劃項目(2018YFE0122700)


Classification of Agricultural Plastic Cover Based on Multi-kernel Active Learning and Multi-source Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通過引入多源多時相衛(wèi)星遙感數(shù)據(jù),提出了一種基于多核主動學(xué)習(xí)的農(nóng)田塑料覆被分類算法,,實現(xiàn)農(nóng)業(yè)塑料大棚和地膜的精準(zhǔn)分類,。首先基于多時相Sentinel-1雷達(dá)和Sentinel-2光學(xué)遙感影像,提取其光譜特征,、紋理特征等,,以構(gòu)建多維特征空間。然后構(gòu)建多核學(xué)習(xí)模型,,實現(xiàn)多源,、多時相特征的自適應(yīng)融合。最后構(gòu)建基于池的主動學(xué)習(xí)策略,,通過引入訓(xùn)練樣本的淘汰機制,,進(jìn)一步提升分類模型的泛化能力。試驗結(jié)果表明,,本文所提分類方法的總體精度為95.6%,,Kappa系數(shù)為0.922,相較經(jīng)典支持向量機,、隨機森林,、K近鄰、決策樹,、AdaBoost模型,,多核學(xué)習(xí)模型精度提高5.7、12.1,、11.4,、22.3、10.3個百分點,;且在相同分類精度下,,主動學(xué)習(xí)較被動學(xué)習(xí)可減少一半以上的標(biāo)簽數(shù)據(jù);同時相較僅使用單時相及單傳感器遙感影像而言,,精度分別提高3.7,、12.7個百分點。結(jié)果表明,多核主動學(xué)習(xí)能夠有效進(jìn)行多傳感器,、多時相數(shù)據(jù)融合,,并可以在小樣本條件下取得更高的分類精度,從而為農(nóng)田塑料覆被的遙感監(jiān)測提供模型參考,。

    Abstract:

    An agricultural plastic covering classification algorithm was proposed based on multi-kernel active learning to achieve accurate classification of agricultural greenhouses and mulch film by introducing multi-source and multi-temporal satellite remote sensing data, and their spectral features and texture features were firstly extracted to construct a multi-dimensional feature space based on the multi-temporal Sentinel-1 radar and Sentinel-2 optical remote sensing data. And then, a multi-kernel learning model was constructed to realize the adaptive fusion of multi-source and multi-temporal features. Finally, a pool-based active learning strategy is constructed to further improve the generalization ability of the classification model by introducing an elimination mechanism for training samples. The test results showed that the overall accuracy of the proposed classification method was 95.6%, the Kappa coefficient was 0.922. Compared with that of the classic SVM, random forest, KNN, decision tree, AdaBoost model, the accuracy of the active learning model was improved by 5.7, 12.1, 11.4, 22.3 and 10.3 percentage points. And under the same classification accuracy, active learning can reduce more than half of the label data than passive learning. The accuracy was improved by 3.7 and 12.7 percentage points, respectively, compared with using only singlephase and single-sensor remote sensing images. The research results showed that multi-kernel active learning can effectively perform multi-sensor and multi-temporal data fusion, and can achieve high classification accuracy under small sample conditions. It can provide model reference for remote sensing monitoring of agricultural plastic cover.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮權(quán)瀧,牛博文,朱德海,劉逸銘,歐聰,劉建濤.基于多核主動學(xué)習(xí)和多源數(shù)據(jù)融合的農(nóng)田塑料覆被分類[J].農(nóng)業(yè)機械學(xué)報,2022,53(2):177-185. FENG Quanlong, NIU Bowen, ZHU Dehai, LIU Yiming, OU Cong, LIU Jiantao. Classification of Agricultural Plastic Cover Based on Multi-kernel Active Learning and Multi-source Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):177-185.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-27
  • 出版日期:
文章二維碼