ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的作物長(zhǎng)勢(shì)監(jiān)測(cè)和產(chǎn)量估測(cè)研究進(jìn)展
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(42171332、41871336)


Crop Growth Monitoring and Yield Estimation Based on Deep Learning: State of the Art and Beyond
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    作物長(zhǎng)勢(shì)是糧食產(chǎn)量估測(cè)與預(yù)測(cè)的主要信息源,,隨著高時(shí)空分辨率遙感數(shù)據(jù)的不斷出現(xiàn),,遙感數(shù)據(jù)已呈現(xiàn)出明顯的大數(shù)據(jù)特征,以深度學(xué)習(xí)為基礎(chǔ)的作物長(zhǎng)勢(shì)監(jiān)測(cè)和產(chǎn)量估測(cè)已成為指導(dǎo)農(nóng)業(yè)生產(chǎn)的重要手段之一,。本文通過(guò)總結(jié)深度學(xué)習(xí)模型樣本以及模型結(jié)構(gòu)的發(fā)展歷程,,概括了深度學(xué)習(xí)在區(qū)域尺度的研究現(xiàn)狀,其中從樣本構(gòu)建和樣本擴(kuò)充兩方面概述了模型樣本,,從卷積神經(jīng)網(wǎng)絡(luò)(CNN),、循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其優(yōu)化結(jié)構(gòu)和模型可解釋性總結(jié)了深度學(xué)習(xí)模型結(jié)構(gòu)的進(jìn)展;隨后從無(wú)人機(jī)平臺(tái)和衛(wèi)星平臺(tái)兩方面闡述了田塊尺度國(guó)內(nèi)外作物長(zhǎng)勢(shì)監(jiān)測(cè)和產(chǎn)量估測(cè)研究的最新進(jìn)展,;最后指出了目前存在的問(wèn)題和未來(lái)擬重點(diǎn)加強(qiáng)的研究任務(wù),,主要包括通過(guò)基于區(qū)域和參數(shù)的遷移學(xué)習(xí)以改善小樣本的限制,;深度學(xué)習(xí)模型和作物生長(zhǎng)模型有機(jī)結(jié)合,,以提高模型的可解釋性;無(wú)人機(jī)平臺(tái)與衛(wèi)星平臺(tái)相結(jié)合,,確保時(shí)空融合過(guò)程中尺度轉(zhuǎn)換的精度,;深入探索深度學(xué)習(xí)在作物長(zhǎng)勢(shì)監(jiān)測(cè)方面的應(yīng)用潛力。

    Abstract:

    Crop growth conditions are key information sources for estimating and forecasting crop yields, which are of great value to food security and trade. With the continuous appearance of high spatial and temporal resolution remote sensing data, the remote sensing data have presented obvious characteristics of big data. Therefore, crop growth monitoring and yield estimation based on deep learning has become one of the important means to guide agricultural production. The research status of deep learning at the regional scale was investigated, which focused on the development of model samples and model structure. Among them, the model samples were summarized through two aspects of sample construction and sample augmentation. The progress of the deep learning model structure of convolutional neural network (CNN), recurrent neural network (RNN), and their optimized structures and model interpretability were also summarized. Besides, the latest progress of crop growth monitoring and yield estimation at field scale at home and abroad was elaborated from two aspects: unmanned aerial vehicle (UAV) platform and satellite platform. Finally, the existing problems and the future perspective were analyzed and discussed, including improving the limitation of small samples through region-based and parameter-based transfer learning, the organic combination of deep learning model and crop growth model to improve the interpretability of the model, and the combination of UAV platform and satellite platform to ensure the precision of scale conversion in the process of spatio-temporal fusion, which can further explore the potential of deep learning in crop growth monitoring.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王鵬新,田惠仁,張悅,韓東,王婕,尹猛.基于深度學(xué)習(xí)的作物長(zhǎng)勢(shì)監(jiān)測(cè)和產(chǎn)量估測(cè)研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):1-14. WANG Pengxin, TIAN Huiren, ZHANG Yue, HAN Dong, WANG Jie, YIN Meng. Crop Growth Monitoring and Yield Estimation Based on Deep Learning: State of the Art and Beyond[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):1-14.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-12-20
  • 出版日期:
文章二維碼