ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v4的群體棉種雙面破損檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31760340),、新疆生產(chǎn)建設(shè)兵團(tuán)南疆重點(diǎn)領(lǐng)域科技支撐計(jì)劃項(xiàng)目(2018DB001),、華中農(nóng)業(yè)大學(xué)-塔里木大學(xué)聯(lián)合基金項(xiàng)目(HNLH202002)和中國(guó)農(nóng)業(yè)大學(xué)-塔里木大學(xué)聯(lián)合基金項(xiàng)目(TDZNLH201703)


Detection Method of Double Side Breakage of Population Cotton Seed Based on Improved YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)研究人員難以利用計(jì)算機(jī)視覺(jué)對(duì)棉種這類(lèi)尺寸較小的物體進(jìn)行雙面檢測(cè),導(dǎo)致檢測(cè)效果不佳的問(wèn)題,,設(shè)計(jì)了一款新型棉種檢測(cè)分選裝置,,利用亞克力板在強(qiáng)光和白色背景下透明的特點(diǎn),將棉種通過(guò)上料裝置滑入透明亞克力板的凹槽中,,隨著轉(zhuǎn)盤(pán)的轉(zhuǎn)動(dòng),,同一批棉種的正反兩面圖像分別由2個(gè)不同位置的CCD相機(jī)采集得到。利用改進(jìn)YOLO v4的目標(biāo)檢測(cè)算法檢測(cè)破損棉種,,試驗(yàn)結(jié)果表明該方法建立的模型對(duì)群體棉種中的破損棉種和完好棉種的檢測(cè)準(zhǔn)確率達(dá)到95.33%,、召回率為96.31%、漏檢率為0,,檢測(cè)效果優(yōu)于原YOLO v4網(wǎng)絡(luò),,實(shí)現(xiàn)了對(duì)雙面群體棉種的破損識(shí)別,為后續(xù)脫絨棉種智能檢測(cè)裝備研發(fā)提供了技術(shù)支持,。

    Abstract:

    Computer vision is one of the commonly used technical methods in the field of cotton seed detection. It has been widely used in the field of non-destructive inspection of agricultural products. However, in most cases, it is difficult for researchers to use computer vision to detect small-sized objects such as cotton seeds on both sides. The detection effect is not good. Aiming at this problem, a type of cotton seed detection and sorting device was designed, which used the transparent characteristics of the acrylic plate under strong light and white background to slide the cotton seed into the groove of the transparent acrylic plate through the feeding device. With the rotation of the turntable, the front and back images of the same batch of cotton were collected by two CCD cameras at different positions. The improved YOLO v4 target detection algorithm was used to detect damaged cotton seeds. The experimental results showed that the model established by this method can detect damaged and intact cotton seeds in the population cotton seeds with an accuracy of 95.33%, recall rate of 96.31%, and missed detection rate of 0. The detection effect was better than that of the original YOLO v4 network, respectively. The proposed method realized the identification of the damage of double-sided group cotton seed, and provided technical support for the subsequent research and development of related delinted cotton seed intelligent detection equipment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王巧華,顧偉,蔡沛忠,張洪洲.基于改進(jìn)YOLO v4的群體棉種雙面破損檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):389-397. WANG Qiaohua, GU Wei, CAI Peizhong, ZHANG Hongzhou. Detection Method of Double Side Breakage of Population Cotton Seed Based on Improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):389-397.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-10
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼