ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LightGBM-SSA-ELM的新疆羊舍CO2濃度預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61871475),、廣東省自然科學(xué)基金項(xiàng)目(2021A1515011605)、現(xiàn)代農(nóng)業(yè)機(jī)械兵團(tuán)重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(BTNJ2021002),、廣州市創(chuàng)新平臺(tái)建設(shè)計(jì)劃項(xiàng)目(201905010006),、廣州市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20210300003)和廣東省科技廳重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2020B0202080002)


Prediction of CO2 Concentration in Xinjiang Breeding Environment of Mutton Sheep Based on LightGBM-SSA-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為減少肉羊集約化養(yǎng)殖過程中因環(huán)境惡化產(chǎn)生的應(yīng)激反應(yīng),精準(zhǔn)調(diào)控CO2質(zhì)量濃度,,提出了基于分布式梯度提升框架(LightGBM),、麻雀搜索算法(SSA)融合極限學(xué)習(xí)機(jī)(ELM)的CO2質(zhì)量濃度預(yù)測(cè)模型。首先利用LightGBM篩選出與CO2質(zhì)量濃度相關(guān)的重要特征,,降低預(yù)測(cè)模型的輸入維度,;然后選擇Sigmoid為激活函數(shù),使用具有較強(qiáng)非線性處理能力的單隱含層ELM神經(jīng)網(wǎng)絡(luò)算法構(gòu)建CO2質(zhì)量濃度預(yù)測(cè)模型,;最后通過麻雀智能優(yōu)化算法對(duì)ELM模型中所需要的超參數(shù)進(jìn)行優(yōu)化,,并將優(yōu)化后模型應(yīng)用于新疆瑪納斯集約化肉羊養(yǎng)殖基地。試驗(yàn)結(jié)果表明,,該模型預(yù)測(cè)均方根誤差(RMSE),、平均絕對(duì)誤差(MAE)和決定系數(shù)(R2)分別為0.0213mg/L、0.0136mg/L和0.9886,,綜合性能指標(biāo)優(yōu)于支持向量回歸(SVR),、反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)、長(zhǎng)短記憶神經(jīng)網(wǎng)絡(luò)(LSTM),、門限循環(huán)單元(GRU)和LightGBM等,;CO2質(zhì)量濃度預(yù)測(cè)曲線貼近真實(shí)曲線,具有良好的預(yù)測(cè)效果,能有效滿足集約化肉羊養(yǎng)殖過程中CO2質(zhì)量濃度精準(zhǔn)預(yù)測(cè)及調(diào)控要求,。

    Abstract:

    Air quality plays an important role in mutton sheep breeding environment, in order to reduce the stress response of CO2 to the growth of large-scale mutton sheep and ensure the healthy growth of mutton sheep in the appropriate environment, the key is to accurately control the CO2 in the mutton sheep breeding environment. A CO2 prediction model of mutton sheep breeding environment was proposed based on light gradient boosting machine (LightGBM), sparrow search algorithm (SSA) and extreme learning machine (ELM). Firstly, LightGBM was used to screen out the important characteristics of carbon dioxide concentration and reduce the input dimension of the prediction model. Then, ELM neural network algorithm with single hidden layer with strong nonlinear processing ability was used to build the CO2 prediction model. Finally, through the sparrow intelligent optimization algorithm, the super parameters needed in ELM model were optimized to obtain the best prediction model. The prediction model was applied to a large-scale mutton sheep breeding base in Manas County, Changji Hui Autonomous Prefecture, Xinjiang Uygur Autonomous Region, and good prediction results were obtained. The experimental results showed that the prediction model had good prediction effect, and the root mean square error (RMSE) of ELM was higher than that of SVR, BPNN, LSTM, GRU and LightGBM. The RMSE, mean absolute error (MAE) and R2 were 0.0213mg/L, 0.0136mg/L and 0.9886, respectively. The results showed that the combined model can not only achieve accurate control of carbon dioxide in sheep house, but also meet the needs of fine decision-making for mutton sheep breeding. It also can help farmers make decisions and reduce farming risks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

尹航,呂佳威,陳耀聰,岑紅蕾,李景彬,劉雙印.基于LightGBM-SSA-ELM的新疆羊舍CO2濃度預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):261-270. YIN Hang, Lü Jiawei, CHEN Yaocong, CEN Honglei, LI Jingbin, LIU Shuangyin. Prediction of CO2 Concentration in Xinjiang Breeding Environment of Mutton Sheep Based on LightGBM-SSA-ELM[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):261-270.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼