ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合多源時(shí)空數(shù)據(jù)的冬小麥產(chǎn)量預(yù)測(cè)模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300702),、河南省重大科技專項(xiàng)(171100110600)和河南省農(nóng)業(yè)科學(xué)院創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2021TD11)


Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高大尺度冬小麥產(chǎn)量預(yù)測(cè)精度,,以2005—2019年河南省遙感數(shù)據(jù)、氣象數(shù)據(jù),、土壤含水率等多源時(shí)空數(shù)據(jù)為特征變量,,分析其與小麥單產(chǎn)的相關(guān)性,并基于隨機(jī)森林算法對(duì)特征變量進(jìn)行了重要性分析,,構(gòu)建了融合多源時(shí)空數(shù)據(jù)的冬小麥產(chǎn)量預(yù)測(cè)模型,。結(jié)果表明:增強(qiáng)型植被指數(shù)(Enhanced vegetation index,EVI),、日光誘導(dǎo)葉綠素?zé)晒猓⊿olarinduced chlorophyll fluorescence,,SIF)與高程為小麥產(chǎn)量預(yù)測(cè)的重要因子,與小麥產(chǎn)量呈高度正相關(guān),,對(duì)小麥產(chǎn)量預(yù)測(cè)的重要性指標(biāo)均超過(guò)0.45,,遠(yuǎn)大于土壤含水率、降水量,、最高溫度,、最低溫度等因子;基于隨機(jī)森林算法構(gòu)建的小麥不同生長(zhǎng)階段產(chǎn)量預(yù)測(cè)模型中,,以10月—次年5月和10月—次年4月為特征變量的產(chǎn)量預(yù)測(cè)模型精度較高,,R2分別為0.85和0.84,RMSE分別為821.55,、832.01kg/hm2,,在空間尺度上,豫西和豫南丘陵山地模型預(yù)測(cè)相對(duì)誤差高于平原地區(qū),。該研究結(jié)果可為大尺度作物產(chǎn)量預(yù)測(cè)提供參考,。

    Abstract:

    In order to improve the prediction accuracy of winter wheat yield in large scale region, taking remote sensing data, meteorological data, soil moisture data of Henan Province from 2005 to 2019 as characteristic variables, the correlation between them and wheat yield was analyzed. The importance of characteristic variables was analyzed based on random forest algorithm. And a wheat yield prediction model was established by means of fusing multi-source spatio-temporal data. The results showed that enhanced vegetation index (EVI), solar-induced chlorophyll fluorescence (SIF) and elevation was an important factor for remote sensing estimation of wheat yield, which was highly positively correlated with wheat yield. The importance of EVI, SIF and elevation to wheat yield exceeded 0.45, far greater than soil moisture, rainfall, maximum temperature, minimum temperature and other factors. The yield prediction model based on random forest algorithm and constructed with the wheat growth stage from October to next May and October to next April as the characteristic variables had higher accuracy, coefficient of determination (R2) were 0.85 and 0.84, and respectively, the root mean square error (RMSE) were 821.55kg/hm2 and 832.01kg/hm2. The prediction relative errors in hills and mountains of western and southern Henan was higher than that in plain areas. The research results provided a reference for large-scale crop yield.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王來(lái)剛,鄭國(guó)清,郭燕,賀佳,程永政.融合多源時(shí)空數(shù)據(jù)的冬小麥產(chǎn)量預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):198-204,458. WANG Laigang, ZHENG Guoqing, GUO Yan, HE Jia, CHENG Yongzheng. Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):198-204,,458.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼