ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于歐氏聚類的三維激光點(diǎn)云田間障礙物檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFB1312304)


Field Obstacle Detection Method of 3D LiDAR Point Cloud Based on Euclidean Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為滿足目前農(nóng)業(yè)機(jī)械(簡(jiǎn)稱農(nóng)機(jī))自動(dòng)駕駛中農(nóng)田障礙物檢測(cè)的需求,,提出了一種使用三維激光雷達(dá)檢測(cè)田間障礙物的方法,。該方法首先對(duì)采集的環(huán)境點(diǎn)云進(jìn)行預(yù)處理,,采用體素柵格下采樣濾波,將稠密的點(diǎn)云在不損失特征信息的情況下進(jìn)行減量,;采用三維長(zhǎng)方體對(duì)角點(diǎn)劃定感興趣區(qū)域以便快速計(jì)算,;采用隨機(jī)采樣一致性(RANSAC)算法檢測(cè)出農(nóng)田地面點(diǎn)云,將地面點(diǎn)云與地面上障礙物點(diǎn)云進(jìn)行分割,。然后對(duì)地面上障礙物點(diǎn)云基于K維樹(K-d tree)進(jìn)行歐氏聚類,,其中聚類的距離閾值為0.6m。最后判斷聚類的點(diǎn)數(shù)量和外接長(zhǎng)方體體積,,過濾掉點(diǎn)數(shù)和體積過大或過小的無效聚類從而得出障礙物,。應(yīng)用32線激光雷達(dá)在北京市小湯山國(guó)家精準(zhǔn)農(nóng)業(yè)示范基地采集田間環(huán)境點(diǎn)云,分別對(duì)田間機(jī)具,、草堆,、田埂、地頭矮房,、路邊樹木和田間行人進(jìn)行檢測(cè),,結(jié)果表明該方法對(duì)田間常見障礙物有較好的檢測(cè)效果??紤]到人是田間行車安全的重要因素,,在田間進(jìn)行了行人橫穿于雷達(dá)視野前方且與雷達(dá)距離分別為5、10,、15,、20、25,、30m時(shí)算法的檢測(cè)效果試驗(yàn),,試驗(yàn)結(jié)果表明田間行人在30m內(nèi)平均檢出率為96.11%。該方法可用于大田環(huán)境下障礙物的檢測(cè),,為農(nóng)機(jī)自主行走過程中的避障策略研究提供了基礎(chǔ),。

    Abstract:

    In response to the current needs of farmland obstacle detection in the automatic driving of agricultural machinery, a method of using threedimensional LiDAR to detect field obstacles was proposed. Firstly, the collected environmental point cloud was preprocessed. The voxel grid down-sampling method was used to filter the dense point cloud without losing feature information. A bounding box was used to segment the region of interest for fast calculation. The random sample consensus algorithm (RANSAC) was used to detect the farmland ground, and the ground point cloud was removed from the whole point data so that the obstacle points were extracted. Then the obstacle point cloud was clustered by Euclidean distance based on the K-d tree, and the distance threshold of clustering was 0.6m in this test. Finally, the size of the cluster and the volume of the circumscribed cuboid were judged, and invalid clusters that were too large or too small were filtered out to obtain obstacles. A LiDAR with 32 channels was used to collect field obstacle point cloud at National Experiment Station for Precision Agriculture in Beijing Xiaotangshan. The algorithm was used to detect agricultural implement, haystack, field ridge, low houses, roadside trees, and field pedestrian. The test showed that the algorithm was suitable for the field common obstacles detection. When detecting pedestrians in the field, the people crossed the front view of the LiDAR and the distances from the LiDAR respectively were 5m, 10m, 15m, 20m, 25m and 30m to test the effect of the algorithm at different distances. The results showed that the average detection rate of dynamically walking people in the field within 30m was 96.11%. This algorithm can be used to detect obstacles in the field environment and can provide a basis for the research of obstacle avoidance strategies in agricultural machinery autonomous driving.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

尚業(yè)華,張光強(qiáng),孟志軍,王昊,蘇春華,宋正河.基于歐氏聚類的三維激光點(diǎn)云田間障礙物檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):23-32. SHANG Yehua, ZHANG Guangqiang, MENG Zhijun, WANG Hao, SU Chunhua, SONG Zhenghe. Field Obstacle Detection Method of 3D LiDAR Point Cloud Based on Euclidean Clustering[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):23-32.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼