ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LSTM-Seq2Seq的兔舍環(huán)境多參數(shù)預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系項目


Multivariable Environmental Prediction Model of Rabbit House Based on LSTM-Seq2Seq
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決傳統(tǒng)兔舍環(huán)境參數(shù)預測方法忽略環(huán)境參數(shù)間耦合關系的問題,,提出了基于LSTM的Seq2Seq兔舍環(huán)境多參數(shù)關聯(lián)序列預測模型,。在建模過程中,使用雙層LSTM作為Seq2Seq結構的編碼器和解碼器,,以提高環(huán)境參數(shù)預測模型的表征能力及預測精度,,而Seq2Seq結構不僅能夠有效提取兔舍環(huán)境參數(shù)序列自身時間相關性,還能夠挖掘參數(shù)間的耦合關系,。利用該模型對浙江省嵊州市某兔場兔舍環(huán)境數(shù)據(jù)進行實驗及預測,。結果顯示,該兔舍環(huán)境多參數(shù)預測模型取得了良好的預測性能,,分別與標準LSTM,、標準SVR模型對比分析,溫度預測精度分別提高28.41%和48.60%,,相對濕度預測精度分別提高9.84%和56.08%,,二氧化碳濃度預測精度分別提高5.39%和11.19%。表明所提出的兔舍環(huán)境多參數(shù)預測模型能夠充分挖掘關聯(lián)環(huán)境參數(shù)序列間的耦合關系,,滿足兔舍環(huán)境數(shù)據(jù)精準預測的需要,。

    Abstract:

    In order to improve the prediction accuracy of the rabbit house environment parameters, solve the coupling relationship between environmental parameters ignored in traditional predict method, and reduce the cost of rabbit house environmental control, a multivariable environmental prediction sequence to sequence model of rabbit house based on Long Short-Term Memory was proposed. Double-layer LSTM was used as the encoder and decoder of the Seq2Seq structure to improve the characterization ability and prediction accuracy of the environmental parameter prediction model. The Seq2Seq structure can not only effectively extract the time correlation of the rabbit house environmental parameter sequence itself, but also can mine the coupling relationship between the parameters. The model was used to test and predict the data of temperature, humidity and carbon dioxide concentration in the rabbit house which in a rabbit farm in Shengzhou City, Zhejiang Province. The results showed that the multi-parameter prediction model of the rabbit house environment achieved good prediction performance. Compared with standard LSTM model and standard SVM model, the prediction accuracy of temperature is improved by 28.41% and 48.60%, the prediction accuracy of humidity is improved by 9.84% and 56.08%, and the prediction accuracy of carbon dioxide concentration is improved by 5.39% and 11.19%. The experimental results showed that the proposed multivariable environmental prediction model of rabbit house not only had good forecasting effect, but also can meet the needs of accurate of prediction of rabbit house environmental data.

    參考文獻
    相似文獻
    引證文獻
引用本文

冀榮華,史珊弋,趙迎迎,劉中英,吳中紅.基于LSTM-Seq2Seq的兔舍環(huán)境多參數(shù)預測[J].農(nóng)業(yè)機械學報,2021,52(S0):396-401. JI Ronghua, SHI Shanyi, ZHAO Yingying, LIU Zhongying, WU Zhonghong. Multivariable Environmental Prediction Model of Rabbit House Based on LSTM-Seq2Seq[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):396-401.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼