ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于語(yǔ)義知識(shí)圖譜的農(nóng)業(yè)知識(shí)智能檢索方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(61802411)


Intelligent Retrieval Method of Agricultural Knowledge Based on Semantic Knowledge Graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)我國(guó)現(xiàn)存網(wǎng)絡(luò)農(nóng)業(yè)數(shù)據(jù)庫(kù)同質(zhì)異構(gòu)、知識(shí)零散化,、一物多詞,、歧義解析缺乏規(guī)范等問題,提出了基于語(yǔ)義知識(shí)圖譜的農(nóng)業(yè)知識(shí)智能檢索方法,。本文方法圍繞農(nóng)作物品種,、農(nóng)作物病蟲害、農(nóng)作物簡(jiǎn)介,、模型方法4個(gè)要素,,自頂向下構(gòu)建模式層;通過本體建模形成知識(shí)圖譜的概念框架,自底向上構(gòu)建數(shù)據(jù)層,;通過數(shù)據(jù)獲取,、知識(shí)抽取、融合,、存儲(chǔ)建立實(shí)體間關(guān)聯(lián)關(guān)系,。針對(duì)語(yǔ)料中歧義字段問題,本文方法在構(gòu)建知識(shí)圖譜中收集大量專有詞匯,,并對(duì)其進(jìn)行分詞及詞性標(biāo)注,。為了解決在農(nóng)業(yè)知識(shí)中一物多詞的問題,收集了數(shù)量龐大的主要農(nóng)作物別名,,并作為實(shí)體賦予明確屬性,,采用Bi-LSTM-CRF進(jìn)行實(shí)體識(shí)別,并通過LSTM將問題進(jìn)行分類,,利用TF-IDF進(jìn)行關(guān)鍵字提取,,最后將知識(shí)存儲(chǔ)于Neo4j圖數(shù)據(jù)庫(kù)中,從而對(duì)相關(guān)農(nóng)業(yè)知識(shí)數(shù)據(jù)做規(guī)范分類,,解決一物多詞,、一義多解問題。

    Abstract:

    Aiming at the problems of huge agricultural data, low utilization rate, complex structure and fragmented knowledge in China, a top-down and bottom-up agricultural knowledge map construction method was proposed. Focusing on the four elements of crop varieties, crop diseases and insect pests, crop introduction, and model methods, the model layer was constructed from the top down, and the conceptual framework of the knowledge graph was formed through ontology modeling, the data layer was constructed from the bottom up, through data acquisition, knowledge extraction, and fusion, storing and establishing the relationship between entities. Aiming at the problem of ambiguous fields in the corpus, this method collects large number of proprietary vocabularies in the construction of knowledge graphs to segment and mark them. In order to solve the problem of multi-word in agricultural knowledge, many main crop aliases were collected and assigned as entities. Bi-LSTM-CRF was used for named entity recognition, and LSTM was used to classify the problem, and TF-IDF was used for keyword extraction, and finally the knowledge was stored in the Neo4j graph database. The research can be used for agricultural knowledge intelligent retrieval systems, intelligent search systems and other applications to improve user experience.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張海瑜,陳慶龍,張斯靜,張子怡,楊 帆,李鑫星.基于語(yǔ)義知識(shí)圖譜的農(nóng)業(yè)知識(shí)智能檢索方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):156-163. ZHANG Haiyu, CHEN Qinglong, ZHANG Sijing, ZHANG Ziyi, YANG Fan, LI Xinxing. Intelligent Retrieval Method of Agricultural Knowledge Based on Semantic Knowledge Graph[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):156-163.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼