ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于集成學(xué)習(xí)的農(nóng)業(yè)生產(chǎn)技術(shù)效率評價(jià)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-29)


Evaluation Method of Agricultural Production Technical Efficiency Based on Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提高農(nóng)業(yè)生產(chǎn)技術(shù)效率是推動(dòng)農(nóng)業(yè)高質(zhì)量發(fā)展的重要內(nèi)容,但傳統(tǒng)的基于前沿面的技術(shù)效率評價(jià)模型在實(shí)際應(yīng)用中存在模型運(yùn)算速度慢和靈活性低等問題,難以對大量新增樣本的效率進(jìn)行快速評價(jià),?;诖耍狙芯繉⒒谇把孛娴腄EA技術(shù)效率測算模型與集成學(xué)習(xí)模型相結(jié)合,,提出一種農(nóng)業(yè)生產(chǎn)技術(shù)效率的評估預(yù)測方法,并利用葡萄生產(chǎn)技術(shù)效率數(shù)據(jù)集驗(yàn)證了模型的效果。研究結(jié)果顯示,,Stacking融合模型的準(zhǔn)確率和AUC分別達(dá)到了94.8%和0.984,均優(yōu)于其他對比模型,,表明基于Stacking集成學(xué)習(xí)模型具有較高的預(yù)測準(zhǔn)確性,,能夠?qū)崿F(xiàn)更加高效、快速的技術(shù)效率評價(jià),。

    Abstract:

    Improving the technical efficiency of agricultural production is an important part to promote the high-quality development of agriculture. However, in practical application, there exist some flaws in the traditional technical efficiency evaluation model based on the frontier, such as slow computing speed and low flexibility, which make it difficult to evaluate the efficiency of a large number of new samples. For the above reasons, a method for evaluating and predicting the technical efficiency of agricultural production was proposed, which combined the DEA technical efficiency measurement model based on the frontier with the ensemble learning model, and the grape production technical efficiency dataset was used to verify the effect of the model. Experiments showed that the Stacking fusion model reached the accuracy and AUC of 94.8% and 0.984 respectively, with promising result that surpassed the other comparison models, indicating that the Stacking ensemble learning model had high accuracy, robustness and generalization ability, and can achieve more efficient, fast and stable technical efficiency evaluation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮建英,蘇允匯,龔劭齊,王 智,穆維松.基于集成學(xué)習(xí)的農(nóng)業(yè)生產(chǎn)技術(shù)效率評價(jià)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):148-155. FENG Jianying, SU Yunhui, GONG Shaoqi, WANG Zhi, MU Weisong. Evaluation Method of Agricultural Production Technical Efficiency Based on Ensemble Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):148-155.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼