ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v3-tiny的全景圖像農(nóng)田障礙物檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFB1312300-2019YFB1312305)和中國(guó)農(nóng)業(yè)大學(xué)建設(shè)世界一流大學(xué)(學(xué)科)和特色發(fā)展引領(lǐng)專(zhuān)項(xiàng)資金項(xiàng)目(2021AC006)


Farmland Obstacle Detection in Panoramic Image Based on Improved YOLO v3-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)自動(dòng)導(dǎo)航農(nóng)機(jī)的避障,解決搭載在農(nóng)機(jī)頂部的全景相機(jī)獲取其周?chē)?60°的圖像信息并精確實(shí)時(shí)快速檢測(cè)出障礙物的問(wèn)題,,提出了一種改進(jìn)YOLO v3-tiny目標(biāo)檢測(cè)模型,,實(shí)現(xiàn)了田間行人和其他農(nóng)機(jī)的檢測(cè)與識(shí)別。為了提高全景圖像中小目標(biāo)的檢測(cè)效果,,以檢測(cè)速度快,、輕量級(jí)的網(wǎng)絡(luò)模型YOLO v3-tiny為基礎(chǔ)框架,通過(guò)融合淺層特征與第二YOLO預(yù)測(cè)層之前的拼接層作為第三預(yù)測(cè)層,,增加小目標(biāo)的檢測(cè)效果,;為了進(jìn)一步增加網(wǎng)絡(luò)模型對(duì)目標(biāo)特征的提取能力,借鑒殘差網(wǎng)絡(luò)的思想,,在YOLO v3-tiny主干網(wǎng)絡(luò)上引入殘差模塊,,增加網(wǎng)絡(luò)深度和學(xué)習(xí)能力,從而能夠較好地提高網(wǎng)絡(luò)的檢測(cè)能力,。為了驗(yàn)證模型的性能,,建立了農(nóng)田環(huán)境下1100幅行人與農(nóng)機(jī)兩類(lèi)障礙物圖像原始數(shù)據(jù)集,經(jīng)數(shù)據(jù)擴(kuò)增后得到2200幅圖像數(shù)據(jù)集,,按8∶1∶1將數(shù)據(jù)集劃分為訓(xùn)練集,、驗(yàn)證集和測(cè)試集,在Pytorch 1.8深度學(xué)習(xí)框架下進(jìn)行模型訓(xùn)練,,模型訓(xùn)練完后用220幅測(cè)試集圖像對(duì)不同模型進(jìn)行測(cè)試,。試驗(yàn)結(jié)果表明,基于改進(jìn)YOLO v3-tiny的農(nóng)田障礙物檢測(cè)模型,,平均準(zhǔn)確率和召回率分別為95.5%和93.7%,,相比于原網(wǎng)絡(luò)模型,分別提高了5.6,、5.2個(gè)百分點(diǎn),;單幅全景圖像檢測(cè)耗時(shí)為6.3ms,視頻流檢測(cè)平均幀率為84.2f/s,,模型內(nèi)存為64MB,。改進(jìn)后的模型,在保證檢測(cè)精度較高的同時(shí),能夠滿(mǎn)足農(nóng)機(jī)在運(yùn)動(dòng)狀態(tài)下實(shí)時(shí)障礙物檢測(cè)需求,。

    Abstract:

    In order to realize the obstacle avoidance of automatic navigation agricultural machinery and solve the problem that the panoramic camera mounted on the top of the agricultural machinery needs to accurately and quickly detect obstacles in real time to obtain the 360° image information around it, an improved YOLO v3-tiny target detection model was proposed, which can realize the detection and identification of pedestrians and other agricultural machinery in the field. In order to improve the detection effect of small targets in panoramic images, the fast detection speed and lightweight network model YOLO v3-tiny was used as the basic framework, and the splicing layer before the second YOLO prediction layer was used as the third prediction layer by fusing the shallow features with the second YOLO prediction layer to increase the detection effect of small targets; in order to further increase the network model's ability to extract target features, borrowing the idea of residual network, the residual module was introduced on the YOLO v3-tiny backbone network to increase the depth and learning ability of the network, so that it can better improve the detection capabilities of the network. In order to verify the performance of the model, totally 1100 original data sets of pedestrian and agricultural machinery obstacles in the farmland environment were established, after data amplification, totally 2200 images data sets were obtained, the data sets were divided into training set, verification and test set according to 8∶1∶1, and the model was trained under the Pytorch 1.8 deep learning framework. After the model was trained, totally 220 images of test set were used to test different models. The test results showed that the farmland obstacle detection model based on improved YOLO v3-tiny had an average accuracy rate and recall rate of 95.5% and 93.7%, respectively, which were 5.6 percentage points and 5.2 percentage points higher than that of the original network model. Single panoramic image detection took 6.3ms, the average frame rate of video stream detection was 84.2f/s, and the model memory was 64MB. The improved model can meet the real-time obstacle detection requirements of agricultural machinery in motion while ensuring high detection accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳 斌,張 漫,徐弘禎,李 寒,尹彥鑫.基于改進(jìn)YOLO v3-tiny的全景圖像農(nóng)田障礙物檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):58-65. CHEN Bin, ZHANG Man, XU Hongzhen, LI Han, YIN Yanxin. Farmland Obstacle Detection in Panoramic Image Based on Improved YOLO v3-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):58-65.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-03
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼