ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源信息融合的中文農(nóng)作物病蟲害命名實(shí)體識(shí)別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300710)


Named Entity Recognition of Diseases and Insect Pests Based on Multi Source Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著農(nóng)作物病蟲害研究文獻(xiàn)的快速增長,,對(duì)農(nóng)作物病蟲害領(lǐng)域文獻(xiàn)進(jìn)行文本挖掘變得越來越重要,。開發(fā)有效,、準(zhǔn)確的農(nóng)作物病蟲害命名實(shí)體識(shí)別系統(tǒng)有助于在農(nóng)作物病蟲害相關(guān)研究報(bào)告中提取研究成果,為農(nóng)作物病蟲害的治理提供有效建議,。本文針對(duì)中文農(nóng)作物病蟲害數(shù)據(jù)集缺失問題,,提出了基于半遠(yuǎn)程監(jiān)督的停等算法,利用該算法構(gòu)建中文農(nóng)作物病蟲害領(lǐng)域語料庫,,大幅度減少標(biāo)注過程的人工成本和時(shí)間成本,;同時(shí),提出了中文農(nóng)作物病蟲害命名實(shí)體識(shí)別模型(Agricultural information extraction, Agr-IE),,該模型基于BERT-BILSTM-CRF,,輔以多源信息融合(多源分詞信息和全局詞匯嵌入信息)豐富字符向量,使其充分結(jié)合字符級(jí)與詞匯級(jí)的信息,,以提高模型捕捉上下文信息的能力,。實(shí)驗(yàn)表明,該模型可以有效地識(shí)別病害,、蟲害,、藥劑、作物等實(shí)體,,F(xiàn)1值分別為96.56%,、95.12%、94.48%,、95.54%,,并對(duì)識(shí)別難度較大的病原實(shí)體具有較好的識(shí)別效果,F(xiàn)1值為81.48%,,高于BERT-BILSTM-CRF,、BERT等模型的相應(yīng)值。本文所提模型在MSRA和Weibo等其他領(lǐng)域數(shù)據(jù)集上與CAN-NER,、Lattice-LSTM-CRF等模型進(jìn)行了對(duì)比實(shí)驗(yàn),,并取得最佳的識(shí)別效果,F(xiàn)1值分別為95.80%,、94.57%,,表明該算法具有一定的泛化能力。

    Abstract:

    Crop diseases and insect pest text mining is becoming increasingly important as the number of crop diseases and insect pest documents rapidly grows. The development of effective and highly accurate named entity recognition (NER) systems of crop diseases and insect pests can be beneficial to extract research results from related research reports and provide effective suggestions for the control of diseases and insect pests. Stopwait algorithm based on semi-remote supervision was proposed to construct the corpus of Chinese crop diseases and insect pests to solve the problem of corpus missing. Moreover, an agricultural information extraction (Agr-IE) method was proposed. The method was based on BERT-BILSTM-CRF, and multi-source word segmentation information and global lexical embedding was used to enrich the information of character vector before character information integrated. Experiments performed by Agr-IE on the datasets of crop diseases and insect pests showed that the model can effectively distinguish four types of entities: the F1 score of diseases, pests, pharmaceuticals, and plant were 96.56%, 95.12%, 94.48% and 95.54%, respectively. And the model also performed well in identifying entities about pathogens (81.48% F1 score), which was higher than the corresponding values of BERT-BILSTM-CRF, BERT and other models. The recognition effect was higher than that of the compared models. In addition, the proposed model was compared with CAN-NER, Lattice-LSTM-CRF and other models on MSRA, Weibo datasets, and the best recognition results were obtained. The F1 scores were 95.80% and 94.57% respectively, which showed that the algorithm had good generalization ability and stability.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李林,周晗,郭旭超,劉成啟,蘇潔,唐詹.基于多源信息融合的中文農(nóng)作物病蟲害命名實(shí)體識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(12):253-263. LI Lin, ZHOU Han, GUO Xuchao, LIU Chengqi, SU Jie, TANG Zhan. Named Entity Recognition of Diseases and Insect Pests Based on Multi Source Information Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(12):253-263.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-12-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-01
  • 出版日期:
文章二維碼