ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LiDAR和DOM數(shù)據(jù)的薇甘菊自動識別與分布預測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(41971376)


Automatic Identification and Predictive Analysis of Mikania micrantha Based on LiDAR and DOM Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    薇甘菊攀援能力強,,生長速度快,對生態(tài)環(huán)境和生物多樣性造成了嚴重威脅,。衛(wèi)星遙感數(shù)據(jù)是薇甘菊識別和預測的主要數(shù)據(jù)源,,但現(xiàn)有的數(shù)據(jù)存在分辨率低、過境時間長和云層遮擋等方面的局限性,,對薇甘菊識別和預測的精度較低,,為此,提出了一種結(jié)合機載激光數(shù)據(jù)(LiDAR)和航攝多光譜數(shù)據(jù)(DOM)的薇甘菊爆發(fā)區(qū)域自動識別及入侵概率預測方法,。采用面向?qū)ο蟮亩喑叨确指罘椒▽ρ芯繀^(qū)內(nèi)薇甘菊爆發(fā)點進行自動識別,,并利用林場內(nèi)冠層高度模型,、植被覆蓋度、坡度,、坡向等數(shù)據(jù),,采用Logistic回歸方法對薇甘菊入侵分布概率進行預測。結(jié)果表明:面向?qū)ο蟮亩喑叨确指罘椒茌^好地提取研究區(qū)內(nèi)薇甘菊爆發(fā)區(qū)域,,識別精度較好,,錯分率為4.66%,漏檢率為0.41%,;Logistic回歸模型對薇甘菊的入侵分布概率有較好的預測效果,,準確率為88.46%。該方法可實現(xiàn)大范圍內(nèi)薇甘菊的精確識別及預測,,可服務(wù)于薇甘菊的綜合防控與監(jiān)測,,為薇甘菊的入侵監(jiān)測提供有力支撐。

    Abstract:

    Mikania micrantha has strong climbing ability and amazing growth speed, which poses a serious threat to the surrounding ecological environment and biodiversity. Satellite remote sensing data is the main data source for identification and prediction of Mikania micrantha. However, the existing data have limitations such as low resolution, long transit time and cloud shielding, and the accuracy of identification and prediction of Mikania micrantha is low. In view of this, a method for automatic identification of Mikania micrantha outbreak area and invasion probability prediction based on airborne laser data and aerial multispectral data was proposed.Object-oriented multi-scale segmentation method was used to automatically identify the outbreak points of Mikania micrantha in the study area, and Logistic regression method was used to predict the invasion distribution probability of Mikania micrantha by using canopy height model, vegetation coverage, slope and slope aspect data in the forest farm. The results showed that the object-oriented multi-scale segmentation method could extract the Mikania micrantha outbreak area in the study area, and the identification accuracy was high, the misclassification rate was 4.66%, and the missed detection rate was 0.41%.Logistic regression model had a good prediction effect on the invasion distribution probability of Mikania micrantha, and the correct rate was 88.46%.This method can realize accurate identification and prediction of Mikania micrantha in a wide range, and can serve for comprehensive prevention and control and monitoring of Mikania micrantha, providing strong support for invasion monitoring of Mikania micrantha.

    參考文獻
    相似文獻
    引證文獻
引用本文

王瑞瑞,李怡燃,石偉,段蕓杉,陳興旺.基于LiDAR和DOM數(shù)據(jù)的薇甘菊自動識別與分布預測[J].農(nóng)業(yè)機械學報,2021,52(11):263-270. WANG Ruirui, LI Yiran, SHI Wei, DUAN Yunshan, CHEN Xingwang. Automatic Identification and Predictive Analysis of Mikania micrantha Based on LiDAR and DOM Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):263-270.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼