ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機(jī)制金字塔網(wǎng)絡(luò)的麥穗檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61605002)、安徽省自然科學(xué)基金項(xiàng)目(2008085MF209)和安徽省高等學(xué)校自然科學(xué)研究項(xiàng)目(KJ2019ZD04,、KJ2020ZD02)


Wheat Spikes Detection Method Based on Pyramidal Network of Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了準(zhǔn)確預(yù)測(cè)小麥產(chǎn)量,,提出了一種基于特征金字塔網(wǎng)絡(luò)改進(jìn)的小麥穗部檢測(cè)方法。針對(duì)檢測(cè)結(jié)果中存在的誤檢或漏檢等問題,,本文首先在原始特征提取網(wǎng)絡(luò)的編碼和解碼區(qū)域分別引入通道注意力機(jī)制和空間注意力機(jī)制,,以增加對(duì)麥穗空間信息和語義信息的提取,有效提升網(wǎng)絡(luò)對(duì)遮擋麥穗的檢測(cè)性能,;其次對(duì)原始區(qū)域建議網(wǎng)絡(luò)的輸入進(jìn)行改進(jìn),,設(shè)計(jì)了一種加權(quán)區(qū)域建議網(wǎng)絡(luò),在通道級(jí)別上將高層具有強(qiáng)語義信息的低分辨率特征圖融合在一起,,經(jīng)過一系列的全連接層和激活函數(shù)生成對(duì)應(yīng)維度的概率后,,對(duì)底層高分辨率特征圖進(jìn)行加權(quán)以增強(qiáng)有用的信息通道,為難以檢測(cè)的較小麥穗生成更精確的檢測(cè)框,。關(guān)于實(shí)地采集的灌漿期麥穗圖像的實(shí)驗(yàn)結(jié)果表明,,本文方法明顯改善了對(duì)遮擋麥穗和較小麥穗的檢測(cè)效果,其檢測(cè)精確度,、召回率和平均精度分別達(dá)到80.53%,、87.12%和88.53%。通過對(duì)公開ACID數(shù)據(jù)集上不同時(shí)期麥穗檢測(cè)結(jié)果的對(duì)比分析,,進(jìn)一步驗(yàn)證了本文方法的有效性,。

    Abstract:

    With the aim to predict the wheat yield accurately, an improved wheat spikes detection method based on feature pyramid network was proposed. In order to solve the problem of misdiagnosis or omission in the detection results, channel attention mechanism and spatial attention mechanism were introduced into the coding and decoding regions of the original feature extraction network, which increased the extraction of spatial information and semantic information on the wheat spikes and effectively improved the detection performance of the network for obscured wheat spikes. At the same time, a weighted-region proposal network was designed to improve the input of the original region proposal network, in which several low-resolution feature maps with strong semantic information characteristics were fused together on channel levels. After a series of full connection layers and activation functions, the fused feature map was converted to probability of the corresponding channels, which were used to weight the underlying high-resolution feature maps to enhance useful information channels. Thus, a more accurately detection frame was generated for smaller spikes which were difficult to detect. The experimental results of the collected wheat spikes images showed that the method could significantly improve the detection effect of the shaded and smaller wheat spikes, where the precision of recognition, recall rate and average precision were 80.53%, 87.12% and 88.53%, respectively. Through the comparative analysis of wheat spikes detection results in different periods on the public ACID data set, the validity of the proposed method was further verified.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

章權(quán)兵,胡姍姍,舒文燦,程鴻.基于注意力機(jī)制金字塔網(wǎng)絡(luò)的麥穗檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(11):253-262. ZHANG Quanbing, HU Shanshan, SHU Wencan, CHENG Hong. Wheat Spikes Detection Method Based on Pyramidal Network of Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):253-262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼