ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機制的葡萄品種多特征分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣西重點研發(fā)計劃項目(桂科21076001),、寧夏釀酒葡萄病蟲害綠色防控關(guān)鍵技術(shù)創(chuàng)新與示范項目(2019BBF02013)和陜西省重點研發(fā)計劃項目(2021NY-041)


Multi-features Identification of Grape Cultivars Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對田間自然背景下葡萄品種鑒別缺乏有效識別方法的問題,提出了一種基于融合注意力機制的殘差網(wǎng)絡(luò)ResNet50-SE,,對自然背景下不同生長時期的葡萄品種進行分類鑒別,,分析并驗證了網(wǎng)絡(luò)的識別效果。將SE注意力模塊引入ResNet-50網(wǎng)絡(luò),,并通過遷移學(xué)習(xí)實現(xiàn)基于不同時期下葡萄的嫩梢,、幼葉及成熟葉片特征的識別;同時為了揭示注意力機制的作用機制,,利用Grad-CAM可視化方法,,對ResNet50-SE模型每一層所提取的不同生長階段下的葡萄特征進行可視化解釋;通過t-SNE算法對模型提取到的不同葡萄品種的多特征進行聚類分析,,進而直觀評估模型對多特征提取的性能,。結(jié)果表明:提出的ResNet50-SE網(wǎng)絡(luò)在田間復(fù)雜背景條件下對于葡萄不同時期的多特征識別具有較高的識別率和較強的魯棒性,模型測試集準(zhǔn)確率達到88.75%,,平均召回率達到89.17%,,相比于AlexNet 、GoogLeNet,、ResNet-50,、VGG-16,測試集準(zhǔn)確率分別提高了13.61,、7.64,、0.70、6.53個百分點;注意力機制能明顯降低背景影響,,強化有效特征,;模型對訓(xùn)練集提取的不同生長時期的特征聚類效果較強??梢?,SE模塊可明顯提升ResNet-50模型在特征提取過程的效果,有效降低田間復(fù)雜背景對分類結(jié)果的影響,,為田間復(fù)雜背景下葡萄品種的分類識別及田間多特征分類問題提供借鑒,。

    Abstract:

    In view of the lack of effective identification methods for grape cultivars identification under the field natural background, a residual network ResNet50-SE based on attention fusion mechanism was proposed to classify and identify grape varieties in different growth periods under natural background, and the identification effect of the network was analyzed and verified. The SE attention module was introduced into ResNet-50 network, and the recognition of grape shoots, young leaves and mature leaves in different periods was realized through transfer learning. Besides, in order to reveal the attention mechanism, the grape characteristics of different growth stages extracted from each layer of ResNet50-SE model were visualized and explained by the Grad-CAM visualization method. The t-SNE algorithm was applied to cluster the multi-features of different grape varieties extracted by the model, and then the performance of multi-features extraction of the model was intuitively evaluated. The results indicated that the ResNet50-SE network had a high recognition rate and strong robustness for grape multi-features recognition in different periods under the complex background conditions in the field. The accuracy rate of the model test set reached 88.75%, and the average recall rate reached 89.17%. Compared with AlexNet, GoogLeNet, ResNet-50 and VGG-16, the accuracy of the test set was improved by 13.61, 7.64, 0.70 and 6.53 percentage points. The attention mechanism can significantly reduce the influence of the background and strengthen the effective features. The model had a strong clustering effect on the features of different growth periods extracted from the training set. Therefore, the SE module can obviously improve the effect of ResNet-50 model in the feature extraction process, and effectively reduce the impact of field complex background on the classification results. The research result can provide a reference for the classification and recognition of grape cultivars multi-features under field complex background.

    參考文獻
    相似文獻
    引證文獻
引用本文

蘇寶峰,沈磊,陳山,米志文,宋育陽,陸南.基于注意力機制的葡萄品種多特征分類方法[J].農(nóng)業(yè)機械學(xué)報,2021,52(11):226-233,252. SU Baofeng, SHEN Lei, CHEN Shan, MI Zhiwen, SONG Yuyang, LU Nan. Multi-features Identification of Grape Cultivars Based on Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):226-233,,252.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼