ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于加權(quán)隨機(jī)森林的番茄氮元素缺乏分級(jí)模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001903)


Discriminant Model of Tomato Nitrogen Deficiency Based on Weighted Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于葉面顏色特征建立番茄氮元素缺乏分級(jí)模型判別準(zhǔn)確率可達(dá)08以上,。夏季定植的番茄葉片表面會(huì)覆蓋粘質(zhì)腺毛,,粘質(zhì)腺毛利于番茄吸收水分和營(yíng)養(yǎng)元素,相同營(yíng)養(yǎng)液氮離子濃度下葉片黃化過(guò)程異于未覆蓋粘質(zhì)腺毛的葉片,。故僅基于葉面顏色特征建立分級(jí)模型,,其準(zhǔn)確率降至0.65。覆蓋粘質(zhì)腺毛番茄其葉片周長(zhǎng)和葉面積兩個(gè)形狀特征均小于未覆蓋粘質(zhì)腺毛的番茄葉片,,本文將番茄葉片兩個(gè)形狀特征結(jié)合原有葉面顏色特征共同作為模型輸入,,建立新的番茄氮元素缺乏分級(jí)模型。搭建圖像采集系統(tǒng),,該圖像采集單元由樹(shù)莓派和其相機(jī)模塊構(gòu)建,,使用WiFi或4G網(wǎng)絡(luò)完成智能手機(jī)、圖像采集單元,、本地計(jì)算機(jī)之間無(wú)線數(shù)據(jù)傳輸,。智能手機(jī)通過(guò)Web界面可遠(yuǎn)程控制采集圖像并將圖像傳輸?shù)皆破脚_(tái)存儲(chǔ)。本地計(jì)算機(jī)對(duì)圖像進(jìn)行預(yù)處理提取葉片形狀,、顏色特征后輸入模型進(jìn)行預(yù)測(cè),,并輸出預(yù)測(cè)結(jié)果。試驗(yàn)結(jié)果表明,,圖像采集系統(tǒng)春季和夏季平均溫度在19.7~28.3℃范圍內(nèi),,光照在1.125~9.543lx范圍內(nèi)均可正常使用,采集的圖像經(jīng)預(yù)處理分割后降低了環(huán)境光線的影響,。使用優(yōu)化后的加權(quán)隨機(jī)森林模型,,基于形狀特征和顏色特征相結(jié)合的葉片氮元素缺乏分級(jí)判別準(zhǔn)確率可達(dá)0.83。

    Abstract:

    Determining and classifying nitrogen deficiency is important for tomato planting. A nitrogen deficiency classification model based on the leaf color features of tomato was proposed. The accuracy of the proposed model can reach over 0.80. The leaf surface of tomatoes planted in summer were covered with glandular hairs. The glandular hairs were conducive to the absorption of water and nutrient elements in a tomato leaf. Under the same concentration of a nutrient solution, the yellowing process of these leaves was different from that of leaves without glandular hairs. Therefore, the accuracy of the classification model based only on leaf color features was reduced to 0.65. The two shape features, namely, the circumference and area of the hair-covered tomato leaves, were both smaller than those of the hairless tomato leaves. Thus, the two shape features of tomato leaf combined with the original leaf color features were used as model inputs to build a new nitrogen deficiency classification model for tomato. The image acquisition unit was constructed using Raspberry Pi and its camera module. Wireless data transmission among smartphones, image acquisition units and local computers was completed using WiFi or a 4G network. Smartphones remotely controlled the acquisition of images and transferred the obtained images through the Web interface to a cloud platform for storage. The local computer preprocessed the images to extract the leaf shape and color features, input the model for prediction, and output the prediction result. The test results showed that the image acquisition system worked properly with temperature ranging from 19.7℃ to 28.3℃ in spring and summer, and the illumination was in the range of 1.125~9.543lx. Preprocessing and segmentation of the acquired images removed any influence of the environment. Using the optimized weighted random forest model, the accuracy of the leaf nitrogen classification model based on shape and color features reached 0.83.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李莉,藍(lán)天,趙奇慧,孟繁佳.基于加權(quán)隨機(jī)森林的番茄氮元素缺乏分級(jí)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(11):219-225,,262. LI Li, LAN Tian, ZHAO Qihui, MENG Fanjia. Discriminant Model of Tomato Nitrogen Deficiency Based on Weighted Random Forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):219-225,,262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼