ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于物聯(lián)網(wǎng)的浮標(biāo)水質(zhì)監(jiān)測(cè)系統(tǒng)與溶解氧濃度預(yù)測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD0900800)


Buoy Water Quality Monitoring System and Prediction Model Based on Internet of Things
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為促進(jìn)近海養(yǎng)殖業(yè)信息化發(fā)展,,更好地實(shí)現(xiàn)對(duì)近海養(yǎng)殖環(huán)境的監(jiān)控,,設(shè)計(jì)了基于浮標(biāo)平臺(tái)的環(huán)境監(jiān)測(cè)系統(tǒng),。利用STM32L475微控制器定時(shí)采集光照,、溫度,、pH值,、溶解氧濃度等信息,通過(guò)物聯(lián)網(wǎng)技術(shù)將數(shù)據(jù)傳輸至云監(jiān)測(cè)平臺(tái),,實(shí)現(xiàn)了多區(qū)域環(huán)境信息遠(yuǎn)程監(jiān)測(cè)和多終端訪問(wèn),。提出了改進(jìn)遺傳算法BP神經(jīng)網(wǎng)絡(luò)的溶解氧濃度預(yù)測(cè)模型,實(shí)現(xiàn)對(duì)近海養(yǎng)殖環(huán)境的預(yù)測(cè),;根據(jù)所采集的數(shù)據(jù),,利用改進(jìn)遺傳算法對(duì)初始權(quán)重和閾值進(jìn)行優(yōu)化得到最優(yōu)參數(shù),在此基礎(chǔ)上構(gòu)建BP神經(jīng)網(wǎng)絡(luò)溶解氧濃度預(yù)測(cè)模型。通過(guò)試驗(yàn)驗(yàn)證了該系統(tǒng)海洋環(huán)境信息采集的準(zhǔn)確性與可靠性,,以及溶解氧濃度預(yù)測(cè)模型的有效性,;與傳統(tǒng)遺傳算法BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型相比,平均誤差由0.0778mg/L降至0.0178mg/L,,能夠滿足近海養(yǎng)殖的實(shí)際需求,。

    Abstract:

    In order to promote the informatization development of offshore aquaculture, realize the monitoring of offshore aquaculture environment more accurately and conveniently, and solve the problems of poor prediction accuracy and robustness of traditional offshore aquaculture water quality prediction methods, an environmental monitoring system was designed based on buoy platform, which realized the remote collection and data storage functions of multi-regional environmental information monitoring data. On this basis, an improved genetic algorithm was proposed to optimize the offshore dissolved oxygen prediction model of BP neural network to realize the prediction of offshore aquaculture environment. The STM32L475 microcontroller was used to collect information such as illumination, temperature, pH value, dissolved oxygen and so on with the help of sensor network, and transmitted the data to the cloud monitoring platform through the Internet of things technology, thus realizing remote monitoring of multi-regional environmental information and multiterminal access. Through the analysis and research of classical prediction algorithms, a dissolved oxygen prediction model based on traditional algorithm optimization was proposed to realize the accurate prediction of offshore aquaculture water quality environment. According to the collected data of aquaculture environment, the initial weights and thresholds were optimized by improved genetic algorithm to obtain the optimal parameters, and then the BP neural network dissolved oxygen prediction model was constructed. Through experiments, the accuracy and reliability of marine environmental information collection and the effectiveness of dissolved oxygen prediction model were verified. Compared with the traditional neural network prediction model, the average error was reduced from 0.0778mg/L to 0.0178mg/L, which can meet the actual needs of offshore aquaculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

曹守啟,葛照瑞,張錚.基于物聯(lián)網(wǎng)的浮標(biāo)水質(zhì)監(jiān)測(cè)系統(tǒng)與溶解氧濃度預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(11):210-218. CAO Shouqi, GE Zhaorui, ZHANG Zheng. Buoy Water Quality Monitoring System and Prediction Model Based on Internet of Things[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):210-218.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼