ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)高光譜遙感影像的防護(hù)林樹種分類
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

新疆生產(chǎn)建設(shè)兵團(tuán)科技計(jì)劃項(xiàng)目(2017DB005),、兵團(tuán)空間信息工程技術(shù)中心創(chuàng)建項(xiàng)目(2016BA001)和中央引導(dǎo)地方科技發(fā)展專項(xiàng)資金項(xiàng)目(201610011)


Classification of Protection Forest Tree Species Based on UAV Hyperspectral Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    樹種信息對林業(yè)資源監(jiān)測和管理具有重要意義,,及時(shí)準(zhǔn)確地掌握樹種及長勢狀況是防護(hù)林工程建設(shè)與效益評價(jià)的基礎(chǔ)。為研究利用無人機(jī)高光譜數(shù)據(jù)進(jìn)行防護(hù)林樹種分類的效果,,選取典型區(qū)域使用Matrice600型六旋翼無人機(jī)搭載Rikola高光譜成像儀獲取高光譜影像,,基于支持向量機(jī)-遞歸特征消除算法(SVM-RFE)選取原始波段最佳組合,再結(jié)合紋理特征,、植被指數(shù)和數(shù)理統(tǒng)計(jì)特征,,使用隨機(jī)森林算法對所有特征進(jìn)行重要性評估并與分類精度相結(jié)合進(jìn)行特征優(yōu)化,,進(jìn)而構(gòu)建高光譜影像全波段、原始波段最佳組合,、全部特征變量,、基于隨機(jī)森林(RF)特征優(yōu)化后特征變量4種分類方案,分別采用最大似然法(MLC),、支持向量機(jī)(SVM),、隨機(jī)森林對防護(hù)林優(yōu)勢樹種進(jìn)行分類。結(jié)果表明:所提出的基于交叉驗(yàn)證的SVM-RFE算法選出的原始波段組合能更好地還原原始光譜特征,;通過RF算法的特征重要性分析與分類精度相結(jié)合的方法可以有效選出重要特征,,當(dāng)使用全部特征的85%(包括17個光譜特征、3個紋理特征,、5個植被指數(shù)和3個數(shù)理統(tǒng)計(jì)特征)進(jìn)行分類時(shí),,總體精度最高為9593%(Kappa系數(shù)為0.9475);所有特征中植被指數(shù)特征最重要,,3種分類方法中RF算法分類總體精度(OA)最高,。

    Abstract:

    Tree species information is of great significance to forestry resource monitoring and management, timely and accurate control of tree species and growth status is the basis for protection forest project construction and benefit evaluation. In order to study the effect of using UAV hyperspectral images to classify protection forest tree species, the advantages of UAV hyperspectral images high-resolution, multi-band, and short-period were used, taking the “Three North” protection forest which on the northern edge of the 150th Regiment of the Eighth Division of Xinjiang Production and Construction Corps as the research area, typical areas were selected and Matrice600 hexarotor drones equipped with Rikola hyperspectral imaging senstor was used to obtain hyperspectral images. Firstly, spectral features, textural features, vegetation indices (VIs) and characteristics of mathematical statics were extracted from the UAV hyperspectral image, the support vector machine-recusive feature elimination (SVM-RFE) algorithm were used selection bands. Through the random forest algorithm to evaluate the importance of all features and combination with the overall classification accuracies was employed for feature reduction, and then four classification schemes of hyperspectral image full band, the best combination of original band, all feature variables, and feature variables based on random forest (RF) feature reduction were constructed. The classification results showed that the original band combination selected by the SVM-RFE algorithm based on crossvalidation proposed can better restore the original spectral features;when considering the four features (spectral features, textural features, hyperspectral Vis and mathematical statistics features) and after feature reduction, the three classifiers used, random forest (RF), maximum likehood classification (MLC) and support vector machine (SVM), the overall classification accuracies of RF was the highest, which were 95.93%, respectively. These results also suggested that vegetation indices were effective for discriminating tree species with similar spectral signatures. The overall results provided evidence for the effectiveness and potential of UAV hyperspectral data for protection forest tree species identification.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙慶展,江萍,王學(xué)文,張麗紅,張建新.基于無人機(jī)高光譜遙感影像的防護(hù)林樹種分類[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(11):190-199. ZHAO Qingzhan, JIANG Ping, WANG Xuewen, ZHANG Lihong, ZHANG Jianxin. Classification of Protection Forest Tree Species Based on UAV Hyperspectral Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(11):190-199.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期:
文章二維碼