ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CT圖像的蘋果苦痘病與磕碰傷識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河北農(nóng)業(yè)大學(xué)理工基金項(xiàng)目(ZD201702)


Recognition of Apple Bitter Pit and Bruise Based on CT Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    對(duì)苦痘病進(jìn)行持續(xù),、準(zhǔn)確,、量化的無損檢測(cè),,以及育種專家對(duì)新品種蘋果的抗苦痘病表型研究,都需要苦痘病準(zhǔn)確識(shí)別技術(shù)的支持,。針對(duì)磕碰傷對(duì)苦痘病識(shí)別產(chǎn)生干擾,,降低了識(shí)別準(zhǔn)確率問題,,基于蘋果CT圖像,,提出了一種蘋果苦痘病和磕碰傷識(shí)別方法。首先,,采用最大類間方差法,、區(qū)域標(biāo)記、中值濾波等方法,,對(duì)337幀蘋果CT圖像進(jìn)行圖像分割和傷病區(qū)域定位,;其次,對(duì)傷病區(qū)域進(jìn)行特征提取,,提取其形狀特征,、紋理特征和位置特征共18種特征信息;然后,,利用多元逐步回歸和類距離可分離性判據(jù)2種方法分別選取特征信息,,將2種方法選出的相同特征作為本文的選用特征信息;最后,,分別使用遺傳算法優(yōu)化的支持向量機(jī)和默認(rèn)參數(shù)的支持向量機(jī),,對(duì)蘋果苦痘病和磕碰傷進(jìn)行識(shí)別。識(shí)別結(jié)果表明,,經(jīng)過遺傳算法優(yōu)化的支持向量機(jī)的總體識(shí)別準(zhǔn)確率高于93%,,默認(rèn)參數(shù)的支持向量機(jī)算法的總體識(shí)別準(zhǔn)確率高于84%。遺傳算法優(yōu)化后的支持向量機(jī)的識(shí)別準(zhǔn)確率明顯優(yōu)于默認(rèn)參數(shù)的支持向量機(jī)的識(shí)別準(zhǔn)確率,。

    Abstract:

    Continuous, accurate, and quantitative non-destructive testing of bitter pit, as well as research on the phenotype of new varieties of apples by breeding experts, require the support of accurate bitter pit identification technology. The presence of bruise will interfere with the recognition of bitter pit and reduce the recognition accuracy. Therefore, it is necessary to carry out research on the recognition of bitter pit and bruise. Based on the CT images of apples, a method for identifying apple bitter pit and bruise was proposed. The method such as maximum between-class variance, region labeling and median filtering were used to segment 337 apple CT images and locate the injured area. Following this step, a total of 18 features of the shape, texture and location of the injured area were extracted. Additionally, the feature information was selected using two methods of multiple stepwise regression and class distance separability criterion. The common features selected by the two methods were used as the selected feature information. Finally, the support vector machine optimized by genetic algorithm and the support vector machine with default parameters were used to identify apple bitter pit and bruise. The recognition results showed that the overall recognition accuracy of the support vector machine optimized by the genetic algorithm was higher than 93%, and the overall recognition accuracy of the support vector machine algorithm with default parameters was higher than 84%. The recognition accuracy of the support vector machine optimized by the genetic algorithm was obviously better than that of the support vector machine with default parameters. The research results can be used to cultivate the phenotype analysis of apple bitter pit and bruise.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

司永勝,曹珊珊,張曉雪,籍穎,呂繼興.基于CT圖像的蘋果苦痘病與磕碰傷識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(10):377-384. SI Yongsheng, CAO Shanshan, ZHANG Xiaoxue, JI Ying, Lü Jixing. Recognition of Apple Bitter Pit and Bruise Based on CT Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):377-384.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-10-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-02
  • 出版日期:
文章二維碼