ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于超寬帶雷達和多光譜數(shù)據(jù)融合的土壤含水率檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(51979233,、41301450)和陜西省重點研發(fā)計劃項目(2020GY-162)


Monitoring Method of Soil Moisture Based on Ultra-wide Band Radar and Multispectral Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    土壤含水率監(jiān)測是精準(zhǔn)農(nóng)業(yè)的重要組成部分,對于農(nóng)情監(jiān)測和農(nóng)業(yè)生產(chǎn)起著關(guān)鍵性作用,。超寬帶雷達由于其體積小,、質(zhì)量輕、穿透力強和功耗低等特性已被廣泛應(yīng)用于土壤含水率監(jiān)測研究,。而現(xiàn)有超寬帶雷達反演土壤含水率多為理想裸土情況,,實際應(yīng)用中地表植被覆蓋會對結(jié)果造成較大影響,針對此問題,,融合超寬帶雷達和多光譜數(shù)據(jù),,利用支持向量機(SVM)模型對農(nóng)田尺度不同植被覆蓋下的土壤含水率進行分級預(yù)測,以減小植被對預(yù)測精度的影響。研究結(jié)果表明,,在超寬帶雷達回波數(shù)據(jù)提取出的不同時域特征組合中,,選用峰值因子、峭度,、均方根,、峰-峰值、最大幅值,、方差,、偏斜度、平均值和最小幅值9個時域特征作為SVM模型輸入特征預(yù)測結(jié)果最好,,總體精度為95.59%,,Kappa系數(shù)為0.9492。加入植被指數(shù)NDVI后,,不同時域特征組合作為特征輸入的模型精度均有顯著提高,,其中將9個時域特征與NDVI共同作為SVM輸入預(yù)測效果最佳,總體精度為98.09%,,Kappa系數(shù)為0.9780,,與不考慮植被影響的預(yù)測結(jié)果比較,總體精度提高了2.50個百分點,,Kappa系數(shù)提高了0.0288,。

    Abstract:

    Soil moisture monitoring is an important part of precision agriculture, and it plays a key role in monitoring agricultural conditions and agricultural production. Ultra-wide band (UWB) radar has been widely used in soil moisture monitoring due to its small size, light weight, strong penetrating power and low power consumption. However, most of soil moisture retrieved with UWB radar is for the case of ideal bare soil conditions. In practical applications, surface vegetation coverage will have a great impact on the results. To solve this problem, support vector machines (SVM) model was used to predict soil moisture under different vegetation coverages in farmland scale by combining UWB radar and multispectral data, so as to eliminate or mitigate the effect of vegetation coverage. The experimental results showed that among different time-domain feature combinations extracted from UWB radar echo data, SVM model with the inputs of nine selected time domain features, including crest factor, kurtosis, root mean square, peak-to-peak value, maximum amplitude, variance, skewness, average and minimum, generated the best prediction results, and the overall accuracy and Kappa coefficient were 95.59% and 0.9492, respectively. After adding the normalized difference vegetation index (NDVI), the model accuracy for different time-domain feature combinations was significantly improved. Among them, the results by combining the nine selected time-domain features and NDVI were the best, and the overall accuracy and Kappa coefficient reached 98.09% and 0.9780, which were raised by 2.50 percentage points and 0.0288 compared with those without considering the influence of vegetation covers.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭交,白清源,郭文川.基于超寬帶雷達和多光譜數(shù)據(jù)融合的土壤含水率檢測[J].農(nóng)業(yè)機械學(xué)報,2021,52(9):241-249. GUO Jiao, BAI Qingyuan, GUO Wenchuan. Monitoring Method of Soil Moisture Based on Ultra-wide Band Radar and Multispectral Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):241-249.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-10-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼