ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于卷積注意力的無人機(jī)多光譜遙感影像地膜農(nóng)田識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2017YFC0403203)、陜西省重點(diǎn)研發(fā)計劃項目(2020NY-098),、楊凌示范區(qū)科技計劃項目(2020-46)和陜西省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(S202010712482)


Convolutional Attention Based Plastic Mulching Farmland Identification via UAV Multispectral Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    監(jiān)測地膜覆蓋農(nóng)田的分布對準(zhǔn)確評估由其導(dǎo)致的區(qū)域氣候和生態(tài)環(huán)境變化有著重要作用,,基于DeepLabv3+網(wǎng)絡(luò),通過學(xué)習(xí)面向地膜語義分割的通道注意力和空間注意力特征,,提出一種適用于判斷農(nóng)田是否覆膜的改進(jìn)深度語義分割模型,,實現(xiàn)對無人機(jī)多光譜遙感影像中地膜農(nóng)田的有效分割,。以內(nèi)蒙古自治區(qū)河套灌區(qū)西部解放閘灌區(qū)中沙壕渠灌域2018—2019年4塊實驗田的無人機(jī)多光譜遙感影像為研究數(shù)據(jù),與可見光遙感影像的識別結(jié)果進(jìn)行對比,,同時考慮不同年份地膜農(nóng)田表觀的變化,,設(shè)計了2組實驗方案,分別用于驗證模型的泛化性能和增強(qiáng)模型的分類精度,。結(jié)果表明,,改進(jìn)的DeepLabv3+語義分割模型對多光譜遙感影像的識別效果比可見光高7.1個百分點(diǎn)。同時考慮地膜農(nóng)田表觀變化的深度語義分割模型具有更高的分類精度,,其平均像素精度超出未考慮地膜農(nóng)田表觀變化時7.7個百分點(diǎn),,表明訓(xùn)練數(shù)據(jù)的多樣性有助于提高地膜農(nóng)田的識別精度。其次,,改進(jìn)的DeepLabv3+語義分割模型能夠自適應(yīng)學(xué)習(xí)地膜注意力,,在2組實驗中,分類精度均優(yōu)于原始的DeepLabv3+模型,,表明注意力機(jī)制能夠增加深度語義分割模型的自適應(yīng)性,,從而提升分類精度。本文提出的方法能夠從復(fù)雜的場景中精準(zhǔn)識別地膜農(nóng)田,。

    Abstract:

    Monitoring of planting distribution of plastic mulching farmland plays an important role in assessing the regional climate and ecological environment changes caused by it. Based on DeepLabv3+, an improved deep semantic segmentation model for plastic mulching farmland was proposed by learning the channel attention and spatial attention features for plastic mulching semantic segmentation. It can effectively segment plastic mulching farmland for unmanned aerial vehicle (UAV) multispectral remote sensing image. The UAV multispectral remote sensing images of four experimental plots during 2018—2019 were taken as the research data. The research area was Shahaoqu Irrigation Farmland in the Hetao Irrigation District, Inner Mongolia Autonomous Region. And compared with the recognition result of visible remote sensing image, by considering the appearances changes of the plastic mulching farmland, two groups of experimental schemes were designed to verify the model’s generalization performance and enhance its classification accuracy respectively. The recognition effect of the improved DeepLabv3+ semantic segmentation model was 7.1 percentage points higher than that of visible light. At the same time, the deep semantic segmentation model considering the apparent changes of mulching fields had a higher classification accuracy, and its average pixel accuracy was 7.7 percentage points higher than that without considering the apparent changes of mulching fields, indicating that the diversity of training data was helpful to improve the recognition accuracy of mulching fields. Secondly, the improved DeepLabv3+ semantic segmentation model had adaptive learning of mulch attention, in both experiments, and its classification accuracy was higher than that of the original DeepLabv3+ model. It was suggested that the attention mechanism can increase the adaptability of deep semantic segmentation model and thus improve the classification accuracy. The proposed method can accurately identify plastic mulching farmland from complex scenes and provide a method reference for monitoring plastic mulching farmland and analyzing their distribution.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

寧紀(jì)鋒,倪靜,何宜家,李龍飛,趙志新,張智韜.基于卷積注意力的無人機(jī)多光譜遙感影像地膜農(nóng)田識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(9):213-220. NING Jifeng, NI Jing, HE Yijia, LI Longfei, ZHAO Zhixin, ZHANG Zhitao. Convolutional Attention Based Plastic Mulching Farmland Identification via UAV Multispectral Remote Sensing Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):213-220.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼