ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

GEE環(huán)境下融合主被動(dòng)遙感數(shù)據(jù)的冬小麥識(shí)別技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51779099)、國家自然科學(xué)基金面上項(xiàng)目(41721333),、河南省科技攻關(guān)重點(diǎn)項(xiàng)目(192102310270)和河南理工大學(xué)博士基金項(xiàng)目(B2017-09)


Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    遙感技術(shù)已成為大宗作物種植面積提取的有效手段,。為避免冬小麥提取中受光學(xué)數(shù)據(jù)缺乏的影響,基于隨機(jī)森林算法(RF)和Google Earth Engine(GEE)云平臺(tái),,探索時(shí)間序列Sentinel-1合成孔徑雷達(dá)(SAR)數(shù)據(jù)后向散射系數(shù)對(duì)冬小麥提取效果,,并融合Sentinel-1、2主被動(dòng)遙感數(shù)據(jù),,研究后向散射系數(shù),、光譜特征、植被指數(shù)特征與紋理特征的不同組合對(duì)冬小麥識(shí)別精度的改善情況,。結(jié)果表明:僅融合多時(shí)相Sentinel-1 SAR數(shù)據(jù)時(shí),,分類總體精度為85.93%,Kappa系數(shù)為0.75,,冬小麥識(shí)別精度達(dá)到95%以上。融合多時(shí)相SAR數(shù)據(jù)與單時(shí)相光學(xué)數(shù)據(jù),,在充分利用極化信息和光譜信息進(jìn)行分類后,,分類總體精度為95.78%,Kappa系數(shù)為0.92,比多時(shí)相SAR分類結(jié)果分別提高9.85個(gè)百分點(diǎn)和約22.67%,,對(duì)冬小麥的識(shí)別精度提高約2個(gè)百分點(diǎn),。通過分析不同特征組合情況下紋理特征對(duì)分類的影響,發(fā)現(xiàn)紋理特征對(duì)冬小麥的識(shí)別精度影響程度較小,。

    Abstract:

    Remote sensing technology had become an effective method to extract planting area of bulk crop. With the aim to avoid the lack of optical data in winter wheat extraction, the validity of time series Sentinel-1 synthetic aperture radar(SAR)backscattering coefficients on winter wheat identification was explored based on random forest(RF)and Google Earth Engine(GEE)cloud platform. And Sentinel-1 and 2 active and passive remote sensing data was integrated to explore the improvement of winter wheat identification accuracy on combining various features groups of backscattering coefficients, spectral features, vegetation index features and texture features. The result indicated that the overall classification accuracy of the monthly average multi-temporal Sentinel-1 SAR polarization data was 85.93%, the Kappa coefficient was 0.75 and the winter wheat identification accuracy was above 95%. By integrating the monthly average time serious multi-temporal SAR data and the single-temporal optical data, the overall classification accuracy was 95.78% and the Kappa coefficient were 0.92. Integrating data fully used the polarization and spectral information and the overall classification accuracy and the Kappa coefficient were improved by 9.85 percentage points and 22.67%. The identification accuracy of winter wheat was improved by about 2 percentage points. The identification accuracy of winter wheat was affected by less than 0.9% by analyzing the influence of texture features under different features combinations. Therefore, the method and platform used accurately and efficiently obtained winter wheat planting area and it had a good promotion value.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬戰(zhàn)林,劉昌華,薛華柱,李靜茹,房旭,周俊利. GEE環(huán)境下融合主被動(dòng)遙感數(shù)據(jù)的冬小麥識(shí)別技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):195-205. MA Zhanlin, LIU Changhua, XUE Huazhu, LI Jingru, FANG Xu, ZHOU Junli. Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):195-205.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼