ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源圖像融合的自然環(huán)境下番茄果實識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市科委科研計劃項目(18391901000)和國家自然科學基金項目(51775333)


Tomato Fruit Recognition Based on Multi-source Fusion Image Segmentation Algorithm in Open Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    蔬果采摘機器人面對的自然場景復雜多變,為準確識別和分割目標果實,,實現(xiàn)高成功率采收,,提出基于多源圖像融合的識別方法。首先,,針對在不同自然場景下單圖像通道信息不充分問題,,提出融合RGB圖像,、深度圖像和紅外圖像的多源信息融合方法,實現(xiàn)了機器人能夠適應(yīng)自然環(huán)境中不同光線條件的番茄果實,。其次,,針對傳統(tǒng)機器學習訓練樣本標注低效問題,提出聚類方法對樣本進行輔助快速標注,,完成模型訓練,;最終,建立擴展Mask R-CNN深度學習算法模型,,進行采摘機器人在線果實識別,。實驗結(jié)果表明,擴展Mask R-CNN算法模型在測試集中的檢測準確率為98.3%,、交并比為0.916,,可以滿足番茄果實識別要求;在不同光線條件下,,與Otsu閾值分割算法相比,,擴展Mask R-CNN算法模型能夠區(qū)分粘連果實,分割結(jié)果清晰完整,,具有更強的抗干擾能力。

    Abstract:

    The natural scenes faced by fruit and vegetable picking robots are complex and changeable. Accurate identification and segmentation of the target fruit are crucial for high success rate harvesting. The instance segmentation is an effective method to solve the problem. Howerver, existing instance segmentation algorithms have some drawbacks, such as the limited effect of edge segmentation accuracy for single-source images, the workload and time spent on image labeling. Therefore, a tomato fruit recognition algorithm based on multi-source fusion image and extended Mask R-CNN model was proposed. Firstly, aiming at the problem of insufficient information in different natural scenes with a single image channel, a multi-source information fusion method combining RGB images, depth images and infrared images was proposed, which enabled the robot to adapt to different lighting and fruits at different maturity stages. Secondly, aiming at the problem of inefficiency of traditional machine learning training sample standards, a clustering method was proposed to assist the rapid labeling of samples to complete the model training. Thirdly, an extended Mask R-CNN deep learning algorithm model was established for online fruit recognition by picking robots. The experimental results showed that the extended Mask R-CNN algorithm model achieved 98.3% detection accuracy and 0.916 detection IoU in the test set, which can well meet the requirements of tomato fruit recognition;under different lighting conditions, compared with the Otsu threshold segmentation algorithm, the extended Mask R-CNN algorithm model was able to distinguish the adherent fruits with clear and complete segmentation results and stronger anti-interference ability.

    參考文獻
    相似文獻
    引證文獻
引用本文

王文杰,貢亮,汪韜,楊智宇,張偉,劉成良.基于多源圖像融合的自然環(huán)境下番茄果實識別[J].農(nóng)業(yè)機械學報,2021,52(9):156-164. WANG Wenjie, GONG Liang, WANG Tao, YANG Zhiyu, ZHANG Wei, LIU Chengliang. Tomato Fruit Recognition Based on Multi-source Fusion Image Segmentation Algorithm in Open Environment[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):156-164.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼