ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)卷積神經(jīng)網(wǎng)絡(luò)的在體青皮核桃檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

新疆維吾爾自治區(qū)研究生科研創(chuàng)新項(xiàng)目(XJ2019G033),、國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目(201810755079S)和葉城縣農(nóng)產(chǎn)品銷售“雙線九進(jìn)”和滬喀品牌推廣項(xiàng)目(KSHSY-2019-09-01)


Green Walnut Detection Method Based on Improved Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    采摘機(jī)器人對(duì)核桃采摘時(shí),需準(zhǔn)確檢測(cè)到在體核桃目標(biāo),。為實(shí)現(xiàn)自然環(huán)境下青皮核桃的精準(zhǔn)識(shí)別,,研究了基于改進(jìn)卷積神經(jīng)網(wǎng)絡(luò)的青皮核桃檢測(cè)方法。以預(yù)訓(xùn)練的VGG16網(wǎng)絡(luò)結(jié)構(gòu)作為模型的特征提取器,,在Faster R-CNN的卷積層加入批歸一化處理,、利用雙線性插值法改進(jìn)RPN結(jié)構(gòu)和構(gòu)建混合損失函數(shù)等方式改進(jìn)模型的適應(yīng)性,分別采用SGD和Adam優(yōu)化算法訓(xùn)練模型,,并與未改進(jìn)的Faster R-CNN對(duì)比,。以精度、召回率和F1值作為模型的準(zhǔn)確性指標(biāo),,單幅圖像平均檢測(cè)時(shí)間作為速度性能評(píng)價(jià)指標(biāo),。結(jié)果表明,利用Adam優(yōu)化器訓(xùn)練得到的模型更穩(wěn)定,,精度高達(dá)97.71%,,召回率為94.58%,F(xiàn)1值為96.12%,,單幅圖像檢測(cè)耗時(shí)為0.227s,。與未改進(jìn)的Faster R-CNN模型相比,,精度提高了5.04個(gè)百分點(diǎn),召回率提高了4.65個(gè)百分點(diǎn),,F(xiàn)1值提升了4.84個(gè)百分點(diǎn),,單幅圖像檢測(cè)耗時(shí)降低了0.148s。在園林環(huán)境下,,所提方法的成功率可達(dá)91.25%,,并且能保持一定的實(shí)時(shí)性。該方法在核桃識(shí)別檢測(cè)中能夠保持較高的精度,、較快的速度和較強(qiáng)的魯棒性,,能夠?yàn)闄C(jī)器人快速長(zhǎng)時(shí)間在復(fù)雜環(huán)境下識(shí)別并采摘核桃提供技術(shù)支撐。

    Abstract:

    In order to realize precise detection of green walnut in natural environment, Faster R-CNN algorithm was improved with three methods for higher adaptability, including batch normalization processing of convolution layer, improved RPN using bi-linear interpolation and the establishment of mixed loss function to strengthen the cohesion of the model. The pre-trained VGG16 network was used as feature extractor, and SGD and Adam optimization methods were adopted to training model respectively. The improved Faster R-CNN model was compared with Faster R-CNN model under the same test conditions. Images of different resolution were used as inputs to explore the impact of image sizes on model performance. Precision, recall rate and F1 value were used as the accuracy indexes of the model, and average detection time per image was used to evaluate the speed performance. The investigation showed that the model trained by Adam optimizer was more stable, its precision was 97.71%, the recall rate was 94.58%, and the F1 value was 96.12%. The single image detection time was 0.227s. The precision of improved Faster R-CNN was 5.04 percentage points higher than that of the unimproved Faster R-CNN model, the recall rate was increased by 4.65 percentage points and the F1 index was increased by 4.84 percentage points. Besides, image detection time per image was decreased by 0.148s. The proposed method was verified to obtain the success rate of 91.25% in the walnut garden environment. The proposed method had high precision, fast speed and good robustness for walnut recognition under natural condition, which can provide a basis for the robot to recognize and pick walnuts in a complex environment quickly for a long time.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

樊湘鵬,許燕,周建平,劉新德,湯嘉盛,魏禹同.基于改進(jìn)卷積神經(jīng)網(wǎng)絡(luò)的在體青皮核桃檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):149-155,,114. FAN Xiangpeng, XU Yan, ZHOU Jianping, LIU Xinde, TANG Jiasheng, WEI Yutong. Green Walnut Detection Method Based on Improved Convolutional Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):149-155,,114.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-10-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼