ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于逆運動學降維求解與YOLO v4的果實采摘系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

云南省科技廳生物資源數(shù)字化開發(fā)應用項目(202002AA10007),、云南省教育廳科學研究基金項目(2020J0402,、2021J0153)和云南省農(nóng)業(yè)聯(lián)合項目(2018FG001-108)


Design of Fruit Picking System Based on Inverse Kinematics Dimension Reduction and YOLO v4
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高采摘設備的執(zhí)行效率,,采用六自由度機械臂,、樹莓派、Android手機端和服務器設計了一種智能果實采摘系統(tǒng),,該系統(tǒng)可自動識別不同種類的水果,,并實現(xiàn)自動采摘,可通過手機端遠程控制采摘設備的起始和停止,,并遠程查看實時采摘視頻,。提出通過降低自由度和使用二維坐標系來實現(xiàn)三維坐標系中機械臂逆運動學的求解過程,從而避免了大量的矩陣運算,,使機械臂逆運動學求解過程更加簡捷,。利用Matlab中的Robotic Toolbox進行機械臂三維建模仿真,驗證了降維求解的可行性,。在果實采摘流程中,,為了使機械臂運動軌跡更加穩(wěn)定與協(xié)調(diào),,采用五項式插值法對機械臂進行運動軌跡規(guī)劃控制?;贒arknet深度學習框架的YOLO v4目標檢測識別算法進行果實目標檢測和像素定位,,在Ubuntu 19.10操作系統(tǒng)中使用2000幅圖像作為訓練集,分別對不同種類的果實進行識別模型訓練,,在GPU環(huán)境下進行測試,,結(jié)果表明,每種果實識別的準確率均在94%以上,,單次果實采摘的時間約為17s,。經(jīng)過實際測試,該系統(tǒng)具有良好的穩(wěn)定性,、實時性以及對果實采摘的準確性,。

    Abstract:

    In order to improve the execution efficiency of picking equipment, a six DOF robot arm, raspberry pie, single chip microcomputer, Android mobile terminal and server were used to build an intelligent fruit picking experimental system. It can automatically identify different kinds of fruits and realize automatic picking. Users can control the picking equipment and view the real-time picking video through the mobile terminal remotely. The solution process of inverse kinematics of manipulator in the three-dimensional coordinate system was realized by reducing the degree of freedom and using two-dimensional coordinate system, so as to avoid a lot of matrix operation and make the process of inverse kinematics solution of manipulator more simple. The Robotic Toolbox in Matlab was used to carry out 3D modeling and simulation of the manipulator, and the feasibility of dimension reduction was verified. In the fruit picking process, in order to make the trajectory of the manipulator more stable and coordinated, the pentanomic interpolation method was used to plan and control the trajectory of the manipulator. The object detection and pixel location of fruit was based on the YOLO v4 artificial intelligence recognition algorithm of Darknet deep learning framework. Using GPU training in the Ubuntu 19.10 operating system, totally 2000 images were used as a training set to train the recognition model of different kinds of fruits. The accuracy rate of each fruit recognition was more than 94%, the time for a single fruit picking about 17s. After the actual test, the system had good stability, real-time performance and the accuracy of fruit picking.

    參考文獻
    相似文獻
    引證文獻
引用本文

張晴暉,孔德肖,李俊萩,鐘麗輝.基于逆運動學降維求解與YOLO v4的果實采摘系統(tǒng)研究[J].農(nóng)業(yè)機械學報,2021,52(9):15-23. ZHANG Qinghui, KONG Dexiao, LI Junqiu, ZHONG Lihui. Design of Fruit Picking System Based on Inverse Kinematics Dimension Reduction and YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):15-23.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼