ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于紅外熱成像的生豬耳溫自動(dòng)提取算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

廣東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019B090922002、2019B020215004,、2019B020215002)


Automatic Ear Temperature Extraction Algorithm for Live Pigs Based on Infrared Thermography
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)利用紅外熱成像進(jìn)行生豬體溫自動(dòng)提取困難的問(wèn)題,,在設(shè)施豬場(chǎng)生豬體溫紅外巡檢裝置的基礎(chǔ)上,提出將生豬耳部區(qū)域作為其體溫的代表區(qū)域,,探索一種基于紅外熱像圖的生豬耳溫自動(dòng)提取算法(IT-PETE),。該算法通過(guò)高效而準(zhǔn)確地識(shí)別生豬耳部區(qū)域并提取耳部區(qū)域的溫度最大值和平均值,實(shí)現(xiàn)生豬體溫非接觸式自動(dòng)監(jiān)測(cè),。IT-PETE算法首先用拉普拉斯算子對(duì)生豬熱紅外圖像進(jìn)行預(yù)處理,,然后基于YOLO v4和形態(tài)學(xué)對(duì)熱紅外圖像中的生豬耳部進(jìn)行提取,并結(jié)合耳部分割圖像和溫度矩陣自動(dòng)獲取耳部區(qū)域溫度的最大值和平均值,。采用5折交叉驗(yàn)證方法訓(xùn)練生豬耳部區(qū)域檢測(cè)模型,,訓(xùn)練集和驗(yàn)證集圖像共2000幅,測(cè)試集400幅,。試驗(yàn)表明,,YOLO v4耳部區(qū)域檢測(cè)準(zhǔn)確率為97.6%,比Faster R-CNN和SSD分別提高了2.0個(gè)百分點(diǎn)和7.8個(gè)百分點(diǎn),單幀圖像的平均檢測(cè)時(shí)間為12ms,。同時(shí)對(duì)20頭豬的人工統(tǒng)計(jì)耳溫?cái)?shù)據(jù)與算法提取體溫進(jìn)行相關(guān)性分析,,得到兩者在耳部區(qū)域溫度最大值和平均值的決定系數(shù)分別為0.9849和0.9119,表明IT-PETE算法對(duì)體溫?cái)?shù)據(jù)的提取具有可靠性和可行性,。因此,,IT-PETE算法在一定程度上可為生豬體溫自動(dòng)化監(jiān)測(cè)和預(yù)警系統(tǒng)提供技術(shù)支撐。

    Abstract:

    In order to solve the problem of pig temperature automatic extraction by infrared thermography, based on the infrared inspection device of pig body temperature in facility farm, an automatic pig ear temperature extraction algorithm IT-PETE, based on infrared thermography, was proposed to identify the ear region of pigs efficiently and accurately and extract the maximum and average values of the ear region to achieve noncontact automatic monitoring of pig body temperature. Specifically, Laplace operator was used to preprocess the thermal infrared image of pigs, then extract the ear of pigs from the thermal infrared image based on YOLO v4 and morphology, and automatically the maximum and average temperature of the ear region was obtained by combining the ear segmentation image and the temperature matrix. The detection model of pig ear region was trained by five fold cross validations, with 2000 infrared thermal images as training and validation sets, and 400 images as test sets. The YOLO v4 detection accuracy of ear region reached 97.6%, which was 2.0 percentage points and 7.8 percentage points higher than that of Faster R-CNN and SSD, respectively. The average detection time of single frame image was 12ms. Meanwhile, through the analysis on the correlation between the artificial statistics of the ear temperature data of 20 pigs and the body temperature extracted by the algorithm, it was obtained that the correlation between their maximum and average temperature in the ear area was 0.9849 and 0.9119 respectively, which showed the reliability and application of the IT-PETE algorithm to extract the body temperature data. Therefore, IT-PETE algorithm can provide technical support for automatic monitoring and early warning system of pig body temperature to a certain extent, with a good application prospect.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖德琴,林思聰,劉勤,黃一桂,曾瑞麟,陳麗.基于紅外熱成像的生豬耳溫自動(dòng)提取算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(8):255-262. XIAO Deqin, LIN Sicong, LIU Qin, HUANG Yigui, ZENG Ruilin, CHEN Li. Automatic Ear Temperature Extraction Algorithm for Live Pigs Based on Infrared Thermography[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(8):255-262.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-10
  • 出版日期:
文章二維碼