ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于非對(duì)稱混洗卷積神經(jīng)網(wǎng)絡(luò)的蘋果葉部病害分割
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61761024,、62061022)


High Precision Identification of Apple Leaf Diseases Based on Asymmetric Shuffle Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蘋果葉部病害由于數(shù)據(jù)集類間樣本不均衡和拍攝角度,、光照變化等實(shí)際成像與環(huán)境因素造成的精度低和泛化能力差的問題,,本文提出了一種新型的非對(duì)稱混洗卷積神經(jīng)網(wǎng)絡(luò)ASNet,。首先,通過在ResNeXt骨干網(wǎng)絡(luò)中添加改進(jìn)的scSE注意力機(jī)制模塊增強(qiáng)網(wǎng)絡(luò)提取的特征;其次,針對(duì)多數(shù)葉片病害特征分布相對(duì)分散的問題,,使用非對(duì)稱混洗卷積模塊代替原始的殘差模塊來擴(kuò)大卷積核的感受野和增強(qiáng)特征提取能力,,從而提升模型的分割精度和泛化能力;最后,在非對(duì)稱混洗卷積模塊中使用通道壓縮和通道混洗的方式彌補(bǔ)了分組卷積造成的通道間關(guān)聯(lián)性不足的缺陷,降低了由于葉部病害類間不均衡導(dǎo)致的傳統(tǒng)網(wǎng)絡(luò)模型精度偏低的問題,。在COCO數(shù)據(jù)集評(píng)價(jià)指標(biāo)下,,實(shí)驗(yàn)結(jié)果表明,相比于骨干網(wǎng)絡(luò)為ResNeXt-50的原始Mask R-CNN模型,,本文模型的平均分割精度達(dá)到96.8%,,提升了5.2個(gè)百分點(diǎn),模型權(quán)重文件減小為321MB,,減小了170MB,。對(duì)實(shí)地采集和AI Challanger農(nóng)作物病害分割挑戰(zhàn)賽的240幅蘋果葉片圖像進(jìn)行測(cè)試,結(jié)果表明,,本文模型ASNet對(duì)蘋果黑腐病,、銹病與黑星病3種病害和健康葉片的平均分割精度達(dá)到94.7%。

    Abstract:

    Aiming at the problems of low accuracy and poor generalization ability caused by the imbalance of samples between data sets, shooting angles, light changes and other actual imaging and environmental factors caused by apple leaf diseases, a type of asymmetric shuffle convolution neural network ASNet was proposed. Firstly, by adding an improved scSE attention mechanism module to the ResNeXt backbone network to enhance the network feature extraction; secondly, for the relatively scattered feature distribution of most leaf diseases, the asymmetric shuffle convolution module was used to replace the original residual module to expand the receptive field of the convolution kernel and the enhanced feature extraction ability, thereby improving the recognition accuracy and generalization ability of the model; finally, the use of channel squeeze and channel shuffling in the asymmetric shuffle convolution module made up for the grouping convolution. The defect of insufficient correlation between channels reduced the problem of low recognition accuracy of traditional network models caused by the imbalance between leaf diseases. Under the COCO data set evaluation index, the experimental results showed that compared with the Mask R-CNN whose backbone network was ResNeXt-50, the average test accuracy of this model reached 96.8%, which was increased by 5.2 percentage points, and the model size was reduced to 321 MB, a decrease of 170 MB. Tested by 240 field-collected and AI Challanger crop disease identification challenge apple leaf images, the test results showed that the average segmentation accuracy of the proposed model ASNet for apple black rot, rust, scab and healthy leaves reached 94.7%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

何自芬,黃俊璇,劉強(qiáng),張印輝.基于非對(duì)稱混洗卷積神經(jīng)網(wǎng)絡(luò)的蘋果葉部病害分割[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(8):221-230. HE Zifen, HUANG Junxuan, LIU Qiang, ZHANG Yinhui. High Precision Identification of Apple Leaf Diseases Based on Asymmetric Shuffle Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(8):221-230.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-10
  • 出版日期:
文章二維碼