ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于懲罰最小二乘算法的土壤重金屬檢測(cè)光譜基線校正
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

2019年江西省“雙千計(jì)劃”引進(jìn)項(xiàng)目(2120800003)和國家自然科學(xué)基金項(xiàng)目(21876014)


Spectrum Baseline Correction for Soil Heavy Metal Detection Based on Penalized Least Squares Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)X射線熒光光譜分析技術(shù)在檢測(cè)土壤重金屬過程中由于土壤背景復(fù)雜、包含大量噪聲和干擾信息而易受基體效應(yīng)影響的問題,,為了提高定量分析模型的精度,,利用懲罰最小二乘算法擬合基線與真實(shí)基線之間的保真度和平滑度,對(duì)X射線熒光光譜進(jìn)行基線校正,,從而減小基線漂移的影響,。選用無基線扣除、非對(duì)稱最小二乘(ASLS),、自適應(yīng)迭代重加權(quán)懲罰最小二乘(AIRPLS),、非對(duì)稱重加權(quán)懲罰最小二乘(ARPLS)、局部對(duì)稱重加權(quán)懲罰最小二乘(LSRPLS)和多約束重加權(quán)懲罰最小二乘(DRPLS) 等6種處理方法對(duì)土壤重金屬元素鉛和砷的測(cè)量光譜進(jìn)行基線校正;結(jié)合偏最小二乘(PLS)算法建立相應(yīng)的校正模型,,以選擇最優(yōu)基線校正算法;與神經(jīng)網(wǎng)絡(luò)(BP)和支持向量機(jī)(SVR)建立的校正模型進(jìn)行比較,,對(duì)模型進(jìn)行評(píng)價(jià)。結(jié)果顯示,,鉛元素的最佳模型為DRPLS-PLS,,模型的R2達(dá)到0.982,預(yù)測(cè)均方根誤差(RMSEP)為0.056 mg/kg;砷元素的最佳模型為DRPLS-PLS模型,,模型的R2達(dá)到0.985,,RMSEP為0.796mg/kg。與PLS和BP模型相比,,鉛,、砷兩種元素的SVR模型建模均最優(yōu),模型的R2分別達(dá)到0.998和0.993,,RMSEP分別為0.015,、0.596mg/kg。實(shí)驗(yàn)表明,,通過基線校正后模型的預(yù)測(cè)精度,、檢出限和穩(wěn)定性均有所提高,該方法可有效提高X射線熒光光譜在土壤中的定量分析能力,。

    Abstract:

    X-ray fluorescence spectrometry has the advantages of nondestructive and rapid detection of heavy metals in soil. However, in the process of practical application, because the soil background is complex and contains a lot of noise and interference information, it is easy to be affected by the matrix effect. In order to improve the accuracy of the quantitative analysis model, it is necessary to carry out baseline correction of X-ray fluorescence spectrum and reduce the effect of baseline drift. Penalty least squares algorithm, as a common baseline algorithm, was used to further optimize the fitting baseline based on least squares by fitting the fidelity and smoothness between the baseline and the real baseline. No baseline deduction, asymmetric least squares (ASLS), adaptive iterative reweighted penalty least squares (AIRPLS), asymmetric reweighted penalty least squares (ARPLS), local symmetric reweighted penalty least squares (LSRPLS) and multi-constrained reweighted penalty least squares (DRPLS) were selected for baseline correction of the measured spectrum of heavy metal elements lead and arsenic in soil, and then the corresponding correction models were established with partial least squares (PLS) algorithm to select the optimal baseline correction algorithm. At last, the partial least square (PLS) model was compared with the correction model established by neural network (BP) and support vector machine (SVR) to evaluate the advantages and disadvantages of different models. The results showed that the optimal baseline correction algorithm of the two elements was DRPLS, which the R2 of the lead corresponding PLS model was 0.982, the prediction root mean square error (RMSEP) was 0.056 mg/kg, and the R2 of the arsenic corresponding PLS model was 0.985, the RMSEP was 0.796 mg/kg. Besides, the SVR models of lead and arsenic were optimal compared with PLS and BP models. And the R2 of the model reached 0.998 and 0.993, respectively. The RMSEP was 0.015 mg/kg and 0.596 mg/kg, respectively. Experiments showed that the prediction accuracy, detection limit and stability of the model established after baseline correction can effectively improve the quantitative analysis ability of X-ray fluorescence spectroscopy in soil.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

江曉宇,李福生,王清亞,郝軍,徐木強(qiáng),羅杰.基于懲罰最小二乘算法的土壤重金屬檢測(cè)光譜基線校正[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(8):205-212. JIANG Xiaoyu, LI Fusheng, WANG Qingya, HAO Jun, XU Muqiang, LUO Jie. Spectrum Baseline Correction for Soil Heavy Metal Detection Based on Penalized Least Squares Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(8):205-212.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-10
  • 出版日期:
文章二維碼