ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Stacking集成學(xué)習(xí)的夏玉米覆蓋度估測(cè)模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601)、寧夏智慧農(nóng)業(yè)產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心項(xiàng)目(2017DC53),、國(guó)家自然科學(xué)基金項(xiàng)目(41771315)和寧夏自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017BY067)


Estimation of Summer Corn Fractional Vegetation Coverage Based on Stacking Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以基于無(wú)人機(jī)多光譜影像提取的夏玉米植被指數(shù)作為特征變量,,利用皮爾森相關(guān)系數(shù)結(jié)合隨機(jī)森林反向驗(yàn)證權(quán)重的方法進(jìn)行特征選擇,去除冗余特征,。以隨機(jī)森林,、梯度提升樹、支持向量機(jī)和嶺回歸作為初級(jí)學(xué)習(xí)器,,以嶺回歸作為次級(jí)學(xué)習(xí)器,,建立基于Stacking集成學(xué)習(xí)的夏玉米覆蓋度估測(cè)模型,并通過5折交叉驗(yàn)證進(jìn)一步提升模型泛化能力,,采用隨機(jī)搜索和網(wǎng)格搜索結(jié)合的方法對(duì)模型超參數(shù)進(jìn)行優(yōu)化,,使用4種回歸指標(biāo)進(jìn)行模型精度評(píng)價(jià),并利用次年數(shù)據(jù)驗(yàn)證其魯棒性,。結(jié)果表明,,與單一模型以及決策樹、Xgboost,、Adaboost,、Bagging集成框架相比,Stacking集成學(xué)習(xí)模型具有更高的精度和更強(qiáng)的魯棒性,,R2為0.9509,,比單一模型平均提升0.0369,比其他集成模型平均提升0.0417,;Stacking集成學(xué)習(xí)模型RMSE,、MAE和MAPE分別為0.0432、0.0330和5.01%,,各指標(biāo)分別比單一模型平均降低0.0138,、0.0130和2.14個(gè)百分點(diǎn),分別比其他集成模型平均降低0.0185,、0.0126和2.15個(gè)百分點(diǎn),。本研究為夏玉米覆蓋度估測(cè)提供了新的方法。

    Abstract:

    Based on the UAV multi-spectral image, the summer corn vegetation index was extracted as a feature variable, and the Pearson correlation coefficient combined with the random forest algorithm was used to reverse the verification weight method for feature selection and redundant features were removed. Random forest, gradient boosting tree, support vector machine and ridge regression were used as the primary learner, and ridge regression was used as the secondary learner to establish a summer corn coverage estimation model based on Stacking ensemble learning, and 5-fold cross-validation was used to further improve model generalization ability, a combination of random search and grid search was used to optimize model hyper parameters, four regression indicators were used for model accuracy evaluation, and the following year’s data was used to verify its robustness. The experimental results showed that compared with a single model and decision tree, Xgboost, Adaboost, and Bagging integrated framework, the Stacking integrated learning model had higher accuracy and stronger robustness. The R2 was 0.9509, which was an average improvement of 0.0369 than that of the single model. Compared with other integrated models, the average increase was 0.0417;RMSE, MAE and MAPE were 0.0432, 0.0330 and 5.01%, respectively, which were 0.0138, 0.0130 and 2.14 percentage points lower than that of the single model, and 0.0185, 0.0126 and 2.15 percentage points lower than that of the other integrated models. The research result provided a method and effective support for the estimation of summer corn coverage.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,陳麗君,劉雯,韓文霆,張姝茵,張凡.基于Stacking集成學(xué)習(xí)的夏玉米覆蓋度估測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(7):195-202. ZHANG Hongming, CHEN Lijun, LIU Wen, HAN Wenting, ZHANG Shuyin, ZHANG Fan. Estimation of Summer Corn Fractional Vegetation Coverage Based on Stacking Ensemble Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):195-202.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期:
文章二維碼