ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于4DVAR和EnKF的遙感信息與作物模型冬小麥估產(chǎn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD020040103)


Winter Wheat Yield Estimation Based on Assimilated Remote Sensing Date with Crop Growth Model Using 4DVAR and EnKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高遙感信息與作物模型同化的估產(chǎn)精度,,以山西省晉南地區(qū)的3個縣為研究區(qū),采用四維變分(Four-dimensional variational, 4DVAR)和集合卡爾曼濾波(Ensemble Kalman filter, EnKF)兩種同化算法將高時空分辨率Sentinel多源數(shù)據(jù)反演的葉面積指數(shù)(Leaf area index, LAI),、土壤含水率(θ)和CERES-Wheat模型進行同化,,對比兩種算法同化LAI和θ的性能,并進行冬小麥產(chǎn)量估測,。結(jié)果表明:兩種同化算法均能結(jié)合遙感觀測和作物模型模擬的優(yōu)勢,,相比模型模擬值,同化精度均有所提高,;4DVAR-LAI和4DVAR-θ的均方根誤差 (Root mean square error, RMSE)分別比EnKF-LAI和EnKF-θ低0.1490m2/m2,、0.0091cm3/cm3,且根據(jù)遙感實際監(jiān)測值4DVAR-LAI更能精確識別冬小麥的物候期,,與實際冬小麥生長發(fā)育的物候期更相符,,因此在Sentinel多源數(shù)據(jù)與CERES-Wheat模型同化中,4DVAR算法的性能更好,;由4DVAR同化后的LAI和θ雙變量建立的估產(chǎn)模型,,RMSE和平均相對誤差(Mean relative error,MRE)小于CERES-Wheat模型模擬估產(chǎn)的RMSE和MRE,,說明估產(chǎn)模型的估產(chǎn)誤差小,,采用4DVAR算法同化Sentinel多源數(shù)據(jù)與CERES-Wheat模型有效提高了冬小麥區(qū)域估產(chǎn)精度。

    Abstract:

    To improve the precision of crop yield estimation by integrating the remote sensing data into the crop model, two methods were applied, the four-dimensional variational (4DVAR) and the ensemble Kalman filter (EnKF), to assimilate the leaf area index (LAI) and the soil moisture (θ) derived from Sentinel multi-source data with the CERES-Wheat model. The two algorithms were assessed on the performance of assimilation of LAI and θ and estimated the yield of winter wheat across three counties located in the south of Shanxi Province in China. It was found that both assimilation algorithms can combine the advantages of remote sensing observations and crop model simulations. Compared with the crop model simulation values, the accuracy of assimilated LAI and θ were improved. Compared with EnKF, the 4DVAR algorithm can reduce the RMSEs of the assimilated LAI and θ by 0.1490m2/m2 and 0.0091cm3/cm3, respectively. And 4DVAR-LAI could accurately identify the phenological period of winter wheat according to the remote sensing observations, which was more consistent with the growth and development of the actual phenological period of winter wheat. Therefore, 4DVAR showed a better performance in the assimilation of Sentinel multi-source data with CERES-Wheat model. The accuracy of the yield estimation model based on assimilated LAI and θ by 4DVAR (RMSE was 449.77kg/hm2, MRE was 7.85%) was higher than the yield accuracy based on simulated values by the CERES-Wheat model (RMSE was 641.55kg/hm2, MRE was 10.23%). The 4DVAR assimilation algorithm effectively improved the yield estimation accuracy of winter wheat at a regional scale.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉正春,徐占軍,畢如田,王超,賀鵬,楊武德.基于4DVAR和EnKF的遙感信息與作物模型冬小麥估產(chǎn)[J].農(nóng)業(yè)機械學(xué)報,2021,52(6):223-231. LIU Zhengchun, XU Zhanjun, BI Rutian, WANG Chao, HE Peng, YANG Wude. Winter Wheat Yield Estimation Based on Assimilated Remote Sensing Date with Crop Growth Model Using 4DVAR and EnKF[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):223-231.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-02-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二維碼