ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無(wú)人機(jī)遙感與隨機(jī)森林的荒漠草原植被分類方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31660137)和內(nèi)蒙古工業(yè)大學(xué)科學(xué)研究項(xiàng)目博士基金項(xiàng)目(BS2020016)


Vegetation Classification of Desert Steppe Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    荒漠草原是草原中最旱生的類型,屬于草原的極限生態(tài)狀態(tài),,也是氣候變化和生態(tài)系統(tǒng)演變的預(yù)警區(qū),。利用無(wú)人機(jī)高光譜遙感技術(shù)快速、準(zhǔn)確地提取荒漠草原草地植被類型,,對(duì)動(dòng)態(tài)監(jiān)測(cè)草原生態(tài)安全和合理開(kāi)發(fā)草地畜牧業(yè)具有重要意義,。以無(wú)人機(jī)搭載高光譜成像系統(tǒng)采集內(nèi)蒙古荒漠草原遙感圖像,獲得具有高空間分辨率和高光譜分辨率的圖像,;通過(guò)光譜連續(xù)統(tǒng)去除變換,,增強(qiáng)草地植被之間的光譜差異,并構(gòu)建植被指數(shù),;采用分步波段選擇法選擇荒漠草原植被的特征波段,,實(shí)現(xiàn)高光譜數(shù)據(jù)降維,;構(gòu)建融合光譜特征、植被特征、地形特征和紋理特征等24個(gè)變量的隨機(jī)森林分類模型,,并與支持向量機(jī)(SVM)、K-最近鄰(KNN)和最大似然分類(MLC)法進(jìn)行比較,。結(jié)果表明,,在4種分類方法中隨機(jī)森林分類算法分類效果最好,總體分類精度達(dá)到91.06%,,比SVM,、KNN和MLC等機(jī)器學(xué)習(xí)算法分別高7.9、15.61,、18.33個(gè)百分點(diǎn),,Kappa系數(shù)達(dá)到0.90,比SVM,、KNN和MLC算法分別高0.13,、0.23和0.26。無(wú)人機(jī)高光譜低空遙感和隨機(jī)森林算法的結(jié)合為荒漠草原草地植被分類提供了新途徑,。

    Abstract:

    Desert steppe is the most arid type of grassland. As the transition between grassland and desert, desert steppe constitutes the fragile zone of ecological environment, and it is also the early warning area of climate change and ecosystem evolution. Using unmanned aerial vehicle (UAV) hyperspectral remote sensing technology to extract grassland vegetation types more quickly and accurately is of great significance to the monitoring of grassland ecological security and the rational development of grassland animal husbandry. The HEX-6 eight rotor UAV was utilized, on which the Pika XC2 hyperspectral imager (spectral wavelength: 400~1000nm, spectral resolution: 1.3nm) was mounted to collect remote sensing images of desert steppe in Inner Mongolia, China. The hyperspectral images with a spatial resolution of 2.1cm were obtained by the UAV flying at a height of 30m from the ground. Spectral difference was enhanced by spectral continuum removal transformation and vegetation indices were constructed by the spectra after continuum removal transformation. The step by step band selection method was used to select vegetation feature bands for reducing data dimension. A random forest classification model with 24 variables, including spectral features, vegetation features, terrain features and texture features was constructed and compared with support vector machine (SVM), K-nearest neighbor (KNN) and maximum likelihood classification (MLC). The random forest classification algorithm (SBS_RF) proposed had the best classification effect among the four classification methods. The overall classification accuracy was 91.06%, which was 7.9, 15.61 and 18.33 percentage points higher than that of SVM, KNN and MLC, respectively. Kappa coefficient was 0.90, which was 0.13, 0.23 and 0.26 higher than that of SVM, KNN and MLC, respectively. The results showed that the combination of UAV hyperspectral remote sensing and SBS_RF algorithm provided a technical means for rapid investigation of desert grassland vegetation types and quantitative indicators for grassland ecological monitoring and animal husbandry management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊紅艷,杜健民,阮培英,朱相兵,劉浩,王圓.基于無(wú)人機(jī)遙感與隨機(jī)森林的荒漠草原植被分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(6):186-194. YANG Hongyan, DU Jianmin, RUAN Peiying, ZHU Xiangbing, LIU Hao, WANG Yuan. Vegetation Classification of Desert Steppe Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):186-194.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二維碼