ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)業(yè)機械作業(yè)大數(shù)據(jù)清洗方法與試驗優(yōu)化
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFD0700205)


Experimental Optimization of Big Data Cleaning Method for Agricultural Machinery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)業(yè)機械大數(shù)據(jù)平臺中,,已有數(shù)據(jù)清洗算法不適用于大規(guī)模,、多源異構、高維度和強時空相關實時數(shù)據(jù)的問題,,分析了復雜田間環(huán)境下農(nóng)機作業(yè)數(shù)據(jù)異常來源及特征,,研究了異常數(shù)據(jù)檢測及修正技術,提出一種基于滑動窗口機制的農(nóng)機作業(yè)數(shù)據(jù)在線清洗方法,。該方法基于方差約束原則識別異常數(shù)據(jù),,基于最小變動原則生成候選修正數(shù)據(jù),基于數(shù)據(jù)時間相關性通過AR,、ARX模型迭代優(yōu)化得到最終修復值,,依托Flink分布式計算平臺,從而適應農(nóng)機數(shù)據(jù)吞吐量大、并發(fā)度高的特點,?;谀呈∞r(nóng)機作業(yè)數(shù)據(jù)對算法進行了有效性驗證,結(jié)果表明,,在數(shù)據(jù)規(guī)模達到1×105條,、數(shù)據(jù)異常率為5%的情況下,算法異常識別率達到0.94,,且與已有清洗算法相比均方根誤差更小,?;贐ox-Behnken方法設計試驗,,通過響應面分析得到回歸模型,分析算法參數(shù)對均方根誤差和運行時間的影響,?;诙M制編碼的混合遺傳算法對參數(shù)進行優(yōu)化,優(yōu)化后的參數(shù)組合可使算法均方根誤差達到0.16,、運行時間達到0.13s,。該數(shù)據(jù)清洗方法能夠為農(nóng)機大數(shù)據(jù)平臺的實時處理提供高質(zhì)量數(shù)據(jù)支撐。

    Abstract:

    Data quality issues are the bottleneck hindering the development of agricultural machinery big data platforms. The existing data cleaning algorithms are not suitable for large-scale, multi-source heterogeneous, high-dimensional, and strong spatiotemporal correlation of agricultural machinery real-time streaming data. To this end, the source and characteristics of the abnormal data of agricultural machinery in complex environments were analyzed, the detection and correction technology of abnormal data was studied, and an online cleaning method for agricultural machinery operation data based on sliding window mechanism was proposed. The method determined abnormal data based on the principle of variance constraint; generated preliminary candidate data based on the principle of minimum change; based on the time correlation of data, the final repair value was obtained through AR and ARX model optimization; relying on the Flink distributed computing platform, it was suitable for large data throughput and high concurrency of agricultural machinery. The validity of the algorithm was verified based on the agricultural machinery operation data of a certain province. The results showed that when the amount of data reached 1×10 5 and the proportion of abnormal data was 5%, the abnormal recognition rate of the algorithm reached 0.94, and the root mean square error was smaller than that of the existing cleaning algorithm. The experiment was designed based on the Box-Behnken method, and the regression model was obtained through response surface analysis to study the influence of algorithm parameters on the root mean square error and time. The hybrid genetic algorithm based on binary coding optimized the parameters, and the optimized parameter combination can make the root mean square error of the algorithm reach 0.16 and the running time reach 0.13s. The data cleaning method can provide high-quality data support for the real-time processing of the agricultural machinery big data platform.

    參考文獻
    相似文獻
    引證文獻
引用本文

苑嚴偉,徐玲,冀福華,郭大方,安颯,???農(nóng)業(yè)機械作業(yè)大數(shù)據(jù)清洗方法與試驗優(yōu)化[J].農(nóng)業(yè)機械學報,2021,52(6):35-42. YUAN Yanwei, XU Ling, JI Fuhua, GUO Dafang, AN Sa, NIU Kang. Experimental Optimization of Big Data Cleaning Method for Agricultural Machinery[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):35-42.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二維碼