ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機(jī)制的時空卷積數(shù)控機(jī)床熱誤差模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51775074)、重慶市重點(diǎn)產(chǎn)業(yè)共性關(guān)鍵技術(shù)創(chuàng)新重點(diǎn)研發(fā)項(xiàng)目(cstc2017zdcy-zdyfX0066、cstc2017zdcy-zdyfX0073)、重慶市技術(shù)創(chuàng)新與應(yīng)用示范重點(diǎn)項(xiàng)目(cstc2018jszx-cyzdX0144)、重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0352)和重慶市研究生科研創(chuàng)新項(xiàng)目(CYS19316)


Spatiotemporal Convolution Thermal Error Model of CNC Machine Tools Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高數(shù)控機(jī)床熱誤差模型的精度與泛化性,,提出了基于注意力機(jī)制的長短時記憶卷積神經(jīng)網(wǎng)絡(luò)(Long short term memory convolutional neural network based on attention mechanism, AM-CNN-LSTM)熱誤差模型。利用卷積神經(jīng)網(wǎng)絡(luò)提取高維數(shù)據(jù)空間狀態(tài)特征的能力和長短時記憶網(wǎng)絡(luò)提取長時間序列狀態(tài)特征的能力,,構(gòu)建具有2個支路的熱誤差模型,,分別提取特征后輸入到注意力機(jī)制中進(jìn)行特征重要性重構(gòu),建立原始數(shù)據(jù)與熱誤差的特征映射,最后通過全連接層進(jìn)行熱誤差預(yù)測,。采用G460L型數(shù)控機(jī)床進(jìn)行實(shí)驗(yàn)數(shù)據(jù)采集,,將不同季節(jié)采集到的溫度數(shù)據(jù)和熱誤差作為模型輸入,采用循環(huán)學(xué)習(xí)率與正則化優(yōu)化方法對模型進(jìn)行訓(xùn)練,。與LSTM,、ConvLSTM和CNN-LSTM熱誤差模型對比,結(jié)果表明,,AM-CNN-LSTM模型對特征還原能力最強(qiáng),,殘差波動范圍最小,其殘差范圍較最大值下降62.09%,,模型預(yù)測精度在2.4μm以內(nèi),。

    Abstract:

    In order to improve the accuracy and generalization of the thermal error model of CNC machine tools, a thermal error model of and long short term memory convolutional neural network based on attention mechanism (AM-CNN-LSTM) was proposed. A thermal error model with two branches was established by using the ability of convolutional neural networks to extract the space state features of high-dimensional data and the ability of long short term memory networks to extract long-term sequence state features, and the extracted features were input into the attention mechanism to reconstruct according to the importance, and then a feature map of original data and thermal error value was established. Finally, the thermal error prediction value was performed through the full connect layer. The G460L CNC lathe was used to collect experimental data, the temperature and thermal error collected in different seasons were used as the model input, and the model was trained using the cyclic learning rate and regularization optimization method. Compared with the thermal error model of LSTM, ConvLSTM and CNN-LSTM, the results showed that AM-CNN-LSTM model had the strongest ability to restore features and the smallest residual error range. It was decreased by 62.09%, and the prediction accuracy of the model was within 2.4μm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜柳青,李仁杰,余永維.基于注意力機(jī)制的時空卷積數(shù)控機(jī)床熱誤差模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(5):404-411. DU Liuqing, LI Renjie, YU Yongwei. Spatiotemporal Convolution Thermal Error Model of CNC Machine Tools Based on Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):404-411.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼