ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BERT的水稻表型知識圖譜實體關(guān)系抽取研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61502236,、61806097)和大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練專項計劃項目(S20190025)


Entity Relationship Extraction from Rice Phenotype Knowledge Graph Based on BERT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對水稻表型知識圖譜中的實體關(guān)系抽取問題,,根據(jù)植物本體論提出了一種對水稻的基因、環(huán)境,、表型等表型組學(xué)實體進(jìn)行關(guān)系分類的方法,。首先,獲取水稻表型組學(xué)數(shù)據(jù),,并進(jìn)行標(biāo)注和分類,;隨后,提取關(guān)系數(shù)據(jù)集中的詞向量,、位置向量及句子向量,,基于雙向轉(zhuǎn)換編碼表示模型(BERT)構(gòu)建水稻表型組學(xué)關(guān)系抽取模型;最后,,將BERT模型與卷積神經(jīng)網(wǎng)絡(luò)模型,、分段卷積網(wǎng)絡(luò)模型進(jìn)行結(jié)果比較。結(jié)果表明,,在3種關(guān)系抽取模型中,,BERT模型表現(xiàn)更佳,精度達(dá)95.11%,、F1值為95.85%,。

    Abstract:

    Rice phenotype has an important guiding role in rice research by analyzing genetic information of various phenotype data. Knowledge graph technology has been widely used in knowledge storage and search engines by structurally describing the information, concepts, entities and relationships in data. As a key task in the knowledge graph, the relation extraction task can extract the connection between two entity words in the text. Within this research, rice phenotypic data was collected from the National Rice Data Center, and the data were preprocessed and annotated. The rice phenotype relationship was proposed based on the plant ontology, and then method of bidirectional encoder representation from transformers (BERT) was applied for classifying relation between rice genomics, environment, and phenotype data based on plant ontology. Then the word vector, position vector and sentence vector were extracted in the relation dataset, and rice phenotype relation extraction model was realized based on BERT. Finally, the results of BERT model was compared with the convolutional neural network and the piecewise convolutional network model. In the comparison of the three relationship extraction models, BERT achieved the best performance, and reached an accuracy of 95.11% and F1 value of 95.85%. Deep learning methods were used to improve the performance of relation extraction of knowledge graphs, which can provide technical support for the efficient construction of a rice phenotype knowledge graph system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁培森,李潤隆,王翀,徐煥良.基于BERT的水稻表型知識圖譜實體關(guān)系抽取研究[J].農(nóng)業(yè)機械學(xué)報,2021,52(5):151-158. YUAN Peisen, LI Runlong, WANG Chong, XU Huanliang. Entity Relationship Extraction from Rice Phenotype Knowledge Graph Based on BERT[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):151-158.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼