ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DeepSORT算法的肉牛多目標跟蹤方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD1100601),、寧夏智慧農(nóng)業(yè)產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心項目(2017DC53)和國家自然科學基金項目(41771315)


Beef Cattle Multi-target Tracking Based on DeepSORT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    肉牛的運動行為反映其健康狀況,在實際養(yǎng)殖環(huán)境下如何識別肉牛并對其進行跟蹤,,對感知肉牛的運動行為至關(guān)重要,。基于YOLO v3改進算法(LSRCEM-YOLO),,利用視頻監(jiān)控實現(xiàn)了實際養(yǎng)殖環(huán)境下的肉牛實時跟蹤,。該方法采用MobileNet v2作為目標檢測骨干網(wǎng)絡(luò),根據(jù)肉牛分布不均,、目標尺度變化較大的特點,,提出通過添加長短距離語義增強模塊(LSRCEM)進行多尺度融合,結(jié)合Mudeep重識別模型實現(xiàn)了肉牛多目標跟蹤,。結(jié)果表明:在目標檢測方面,,LSRCEM-YOLO的mAP值達到了92.3%,模型參數(shù)量僅為YOLO v3的10%,,相比YOLO v3-tiny也降低了31.34%,;在肉牛重識別方面,采用基于調(diào)整感受野的Mudeep模型,獲得了更多的多尺度特征,,其Rank-1指標達到了96.5%,;多目標跟蹤的多目標跟蹤準確率相對于DeepSORT算法從32.3%提高到了45.2%,ID switch次數(shù)降低了69.2%,。本文方法可為實際環(huán)境下的肉牛行為實時跟蹤,、行為感知提供技術(shù)參考。

    Abstract:

    The behavior of beef cattle reflects its health status. How to recognize and track beef cattle in a real breeding environment is very important to perceive the behavior of beef cattle. Wearable devices have limited accuracy in sensing motion behavior and are easily damaged,while monitoring devices are widely used in farms and have a long lifespan. Based on the improved YOLO v3 algorithm (LSRCEM-YOLO),surveillance video was used to achieve real-time tracking of beef cattle in a real breeding environment. MobileNet v2 was used as the object detection backbone network. According to the uneven distribution of beef cattle and the large change of target scale, long-short range context enhancement module (LSRCEM) was proposed for multi-scale fusion, combined with the Mudeep ReID model to achieve multiple targets for beef cattle track. The experimental results showed that in beef cattle object detection, the mAP index of LSRCEM-YOLO reached 92.3%, and the model parameter amount was only 10% of YOLO v3, which was also reduced by 31.34% compared with YOLO v3-tiny; in terms of beef cattle re-identification (ReID), based on adjusting the Mudeep model of the receptive field obtained more multi-scale features, and its Rank-1 index reached 96.5%. Compared with the original DeepSORT algorithm, the MOTA index of multi-target tracking was increased from 32.3% to 45.2%, and the number of ID switch was decreased by 69.2%. This method can provide technical reference for real-time tracking and behavior perception of beef cattle in real environment.

    參考文獻
    相似文獻
    引證文獻
引用本文

張宏鳴,汪潤,董佩杰,孫紅光,李書琴,王紅艷.基于DeepSORT算法的肉牛多目標跟蹤方法[J].農(nóng)業(yè)機械學報,2021,52(4):248-256. ZHANG Hongming, WANG Run, DONG Peijie, SUN Hongguang, LI Shuqin, WANG Hongyan. Beef Cattle Multi-target Tracking Based on DeepSORT Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):248-256.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二維碼