ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力改進CBAM的農(nóng)作物病蟲害細粒度識別研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61370102,、61976052)和廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金項目(2019B1515210009)


Fine-grained Identification Research of Crop Pests and Diseases Based on Improved CBAM via Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    預(yù)防和控制農(nóng)作物病蟲害是保證作物產(chǎn)量的重要措施,。為了提高病蟲害識別模型的準(zhǔn)確率,,對注意力CBAM模塊進行改進,,提出一種新的混合注意力模塊I_CBAM,。通過通道注意力與空間注意力的并行連接,,解決了串行連接兩種注意力產(chǎn)生干擾的問題。添加了I_CBAM模塊的InRes-v2,、MobileNet-v2,、LeNet、AlexNet,、改進AlexNet模型的Top-1(61類)準(zhǔn)確率分別達到了86.98%,、86.50%,、80.97%、84.47%和84.96%,,比原模型分別提高了0.51,、0.62、1.74,、0.53,、0.55個百分點。研究表明,,提出的并行混合注意力模塊I_CBAM在病蟲害細粒度分類上具有更優(yōu)的識別效果,,且在不同卷積神經(jīng)網(wǎng)絡(luò)模型之間擁有良好的泛化性。將I_CBAM中通道注意力壓縮比調(diào)整為32,,使添加了I_CBAM的MobileNet-v2遷移學(xué)習(xí)模型的內(nèi)存縮小至28.3MB,,預(yù)測一幅圖像平均用時僅為7.19ms,大大提高了預(yù)測響應(yīng)速度,。將該模型部署到移動端小程序上,,結(jié)果表明,添加了I_CBAM模塊的模型具有良好的可視化應(yīng)用效果,。

    Abstract:

    Agricultural production is a significant part of Chinese economic development. The prevention and control of crop pests and diseases are critical measures to ensure crop yield. In order to improve the accuracy of the crop pests and diseases identification model, a new attention module I_CBAM improved from CBAM was proposed. By adopting a parallel connection structure of channel attention and spatial attention, the problem of interference caused by cascade of channel attention and spatial attention module was solved. By adding I_CBAM, the prediction accuracy of the model can be steadily improved. By adding I_CBAM to the five convolutional neural network models of InRes-v2, MobileNet-v2, LeNet, AlexNet, and improved AlexNet, the accuracy of Top-1 (61 types) reached 86.98%, 86.50%, 80.97%, 84.47% and 84.96%, respectively. Compared with the original model, it was improved by 0.51, 0.62, 1.74, 0.53 and 0.55 percentage points, respectively. The final results showed that the parallel mixed attention module I_CBAM proposed had better recognition effect on fine-grained classification of crop pests and diseases. And it also had good generalization in different other convolutional neural network models. Furthermore, by adjusting the channel attention ratio in I_CBAM to 32, the memory size of the MobileNet-v2 transfer learning model with I_CBAM was further reduced to 28.3MB. Meanwhile, the average time the model used to predict a picture was only 7.19ms, which made a good balance between the prediction cost and the prediction accuracy. Finally, the model was deployed on the mobile terminal mini application, which had a good visual application effect.

    參考文獻
    相似文獻
    引證文獻
引用本文

王美華,吳振鑫,周祖光.基于注意力改進CBAM的農(nóng)作物病蟲害細粒度識別研究[J].農(nóng)業(yè)機械學(xué)報,2021,52(4):239-247. WANG Meihua, WU Zhenxin, ZHOU Zuguang. Fine-grained Identification Research of Crop Pests and Diseases Based on Improved CBAM via Attention[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):239-247.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二維碼