ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO的玉米幼苗株數(shù)獲取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601,、2017YFC0403203)和國(guó)家自然科學(xué)基金項(xiàng)目(41771315)


Detection Method of Maize Seedlings Number Based on Improved YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為快速準(zhǔn)確獲取玉米幼苗株數(shù),、評(píng)估播種質(zhì)量、進(jìn)行查缺補(bǔ)苗等管理,,對(duì)YOLO算法進(jìn)行改進(jìn),,提出了一種基于特征增強(qiáng)機(jī)制的幼苗獲取檢測(cè)模型(FE-YOLO),實(shí)現(xiàn)了對(duì)玉米幼苗株數(shù)的快速獲取,。該方法根據(jù)玉米幼苗目標(biāo)尺寸和空間紋理特征,,構(gòu)建了基于動(dòng)態(tài)激活的輕量特征提取網(wǎng)絡(luò),融合了多感受野和空間注意力機(jī)制,。實(shí)驗(yàn)表明:FE-YOLO模型增強(qiáng)了幼苗空間特征,、降低了網(wǎng)絡(luò)復(fù)雜度,使模型的mAP和召回率分別達(dá)到87.22%和91.54%,,每秒浮點(diǎn)運(yùn)算次數(shù)和檢測(cè)推理時(shí)間僅為YOLO v3的7.91%和33.76%,。FE-YOLO能夠?qū)崿F(xiàn)無(wú)人機(jī)正射影像的玉米幼苗株數(shù)獲取和種植密度估算,該模型復(fù)雜度低,、識(shí)別精度高,,能夠?yàn)橛衩酌缙诠芾硖峁┘夹g(shù)支持。

    Abstract:

    The number of maize seedlings is the essential information for sowing quality assessment. It is important to obtain the number of maize seedlings quickly and precisely for investigation and filling the gaps with seedlings. To improve the real time and precision of the acquisition of maize seedling number, the YOLO model (FE-YOLO) was improved, and the detection and acquisition of maize seedling number were realized. Firstly, dynamic ReLU was used to improve the bottleneck layer of MobileNet and the feature extraction performance of MobileNet was increased. Then, according to the target size and spatial texture characteristics of maize seedlings, the multi-receptive field fusion and spatial attention mechanism were used to enhance the feature expression. The experimental results showed that the FE-YOLO model enhanced the spatial texture characteristics of the seedlings, reduced the complexity of the model, made the mAP and recall rates reach 87.22% and 91.54%, respectively, and the floating-point operations per second and detection consumption time were only 7.91% and 33.76% of YOLO v3. FE-YOLO can detect the maize seedlings in the UAV orthoimage, and then Equation (13) was used to estimate the planting density. FE-YOLO had low complexity and high recognition accuracy, which can provide support for maize seedling management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張宏鳴,付振宇,韓文霆,陽(yáng)光,牛當(dāng)當(dāng),周新宇.基于改進(jìn)YOLO的玉米幼苗株數(shù)獲取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(4):221-229. ZHANG Hongming, FU Zhenyu, HAN Wenting, YANG Guang, NIU Dangdang, ZHOU Xinyu. Detection Method of Maize Seedlings Number Based on Improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):221-229.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-12-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二維碼